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Due to the computational intensive nature, the current available WSN 
simulators, which are based on the traditional CPU computing architec-
ture, cannot run in a linear scalability. In this paper, we propose and set up 
CU-Simulator, a parallel radio channel simulator to enhance the perfor-
mance for simulating data packet transmission in WSNs using NVIDIA’s 
CUDA-enabled GPU parallel computing architecture. First, the node 
positions are simulated on GPU. Second, we propose an efficient data 
structure for acceleration, called CUDA-quad-trees, residing in the fast 
on-chip memory of GPU, to organize sensor nodes in such a manner that 
the detection of possible transmitters is facilitated. Third, a CUDA paral-
lel radio channel simulating engine is established. Experimental results 
show that CU-Simulator has a super-linear scalability and greatly outper-
forms a CPU implementation with up to 452.07-times speedup on an HP 
Z800 workstation with a NVIDIA Tesla C2070 card and an Intel Xeon 
Core-quad CPU.

Keywords:  Wireless sensor network, radio channel simulation, node position, 
quad-tree, CUDA, parallel computing, scalability. 

1  INTRODUCTION

A wireless sensor network (WSN) [1] is composed of small and independent 
sensor nodes, which collect information from the environment where they are 
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deployed. Each node is equipped with a short-range radio transceiver. A net-
work is formed through the communication between the nodes. Communica-
tion protocols, OS and applications run on the nodes to make a WSN work 
efficiently. WSNs have broad applications, such as military target tracking 
and surveillance, natural environment exploration, animal tracking, health 
monitoring, and business inventory monitoring. WSNs are becoming more 
and more popular in the recent years, because nodes are smaller, cheaper, and 
more powerful than ever.

Software simulation is a popular auxiliary approach for on-node software 
development in the study of WSNs, similar to the studies in other wireless 
networks. Simulation of data packet transmission in wireless medium (radio 
channel) is the most restrictive factors in simulation [2]. The computation of 
determining the possible receptors for each packet transmission of a node is 
costly, and it repeats endlessly during the simulation, which takes most of the 
computation. Moreover, the more accurate the radio model is, the more cost 
it takes. In addition, the number of nodes in a real-world deployment has been 
up to 2900 [3]. A large number of nodes aggravate the burden of simulation 
seriously, which leads to a poor performance, not to mention scalability.

In sequential simulators, two approaches are adopted to improve the per-
formance. One approach is to eliminate the simulation of data packet trans-
mission in radio channel partially or completely, because high-level protocols 
only care the output of lower layers, and radio channel will not produce a 
direct effect on them [4-6]. The other approach is to develop optimization 
techniques. To accelerate the computation in simulation, the computation for 
data packet transmission is cut down by reducing the search for possible 
receptors [7]. However, the compute-intensive and memory-hungry nature 
doesn’t change. When the network is large, the performance of the simulation 
is not tolerable at all. As a result, neither of the above solutions provides a 
scalable solution. Parallel and distributed simulation techniques have been 
discussed, however, there is still no parallel WSN simulator yet, due to the 
complexity of data exchange between different processors.

Graphics Processing Unit (GPU) is now a flourishing solution for parallel-
ism. It is originally a kind of highly specialized processors designed for 
graphics rendering. Nowadays, its architecture has evolved towards general-
purpose parallel computing, and high-level languages have also emerged to 
support easy programming on GPUs. NVIDIA provides Compute Unified 
Device Architecture (CUDA) architecture with standard C-like interface to 
manipulate its GPUs [8]. GPU now provide tremendous memory bandwidth 
and computing power. For example, Tesla C2070 can achieve a bandwidth of 
144 GB/s, a double-precision peak performance of 515 Gflops/s and a single-
precision peak performance of 1.03 Tflops/s [9]. Low cost is another high-
light of GPU, only around $1,900 for a Tesla C2070. Although it is low in 
cost, its computing power is equivalent to a medium-sized supercomputer 
which is orders of magnitude more costly. It provides the medium-sized busi-
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ness and individuals great opportunities to afford supercomputing facilities. 
As a result, there has been an evident trend to accelerate computational inten-
sive applications on a GPU+CPU heterogeneous system, where the GPU acts 
as the computation accelerator; and this architecture has been widely used in 
communication, military, business, medical and other domains.

In this paper, we propose and implement CU-Simulator, a parallel scalable 
radio channel simulation platform based on the CUDA-enabled GPU parallel 
computing architecture. A novel data structure, called CUDA-quad-trees, is 
developed to accelerate the detection of possible transmitters, which takes 
advantage of the fast on-chip shared memory of GPU. A statistical model for 
data packet transmission in WSNs is applied to determine data packet recep-
tion by inspecting the found possible transmitters. CU-Simulator runs on 
GPU, and interacts with the simulation of on-node native code on CPU 
through limited data exchange. Experiments are performed on an HP Z800 
workstation with a NVIDIA Tesla C2070 card and an Intel Xeon Core-quad 
2.93 GHz CPU. Compared with the radio channel simulation of a CPU-based 
serial WSN simulator, our proposed CU-Simulator achieves up to 452.07-
times speedup, showing good performance with super-linear complexity.

The contribution of this paper can be summarized in two aspects: 1) An 
in-memory tree structure on GPU, called CUDA-quad-trees, is proposed, 
which resides in the high-speed on-chip memory of a GPU not only in the 
construction stage but also in the search stage; 2) Different with existing sim-
ulation frameworks of radio channel, a parallel search-based computing 
engine is proposed, which inspects the possible transmitters for each receptor 
to accomplish simulation of data packet transmission in a WSN.

The rest of this paper is organized as follows: Section 2 gives a brief intro-
duction to the GPU architecture and CUDA programming model, then pres-
ents the related research works. Section 3 outlines our parallel simulation 
platform for radio channel in WSNs, which is based on the GPU+CUDA 
parallel computing architecture. In Section 4, CUDA-based random number 
generation and nodes simulation are presented. In Section 5, we propose a 
tree-based data structure for acceleration, CUDA-quad-trees. In Section 6, 
our parallel search-based simulation engine for radio channel is described. 
Scalability analysis and experimental results are presented in Section 7 and 
we summarize our work in Section 8.

2  BACKGROUND KNOWLEDGE AND RELATED WORKS

2.1  NVIDIA’s CUDA-enabled Parallel Computing
Nowadays, GPUs have evolved into a highly parallel, many-core processor. 
The peak floating-point capability of GPU is an order of magnitude higher 
than that of CPU, as well as the memory bandwidth. In addition to rendering 
process, they are also suitable for general compute-intensive, highly parallel 
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computation. In NVIDIA’s nomenclature, CPU is referred as the “host”, 
CUDA-enabled GPU is referred as the “device”. The host sees a CUDA 
device as a many-core co-processor, and controls it to accomplish the dis-
patched computational tasks.

2.1.1  GPU Architecture
At hardware level, a CUDA-enabled GPU consists of a set of single instruc-
tion multiple data (SIMD) stream multiprocessors (SMs) with 32 stream pro-
cessors (SPs) each. For example, a Tesla C2070 has 14 SMs, totally 448 SPs. 
Each SM contains a small but fast on-chip shared memory, which has very 
low access latency (1-2 clock cycles) and is shared by all of its SPs as shown 
in Figure 1. Shared memory is managed explicitly by the programmers. It 
also contains a read-only constant cache which is shared by its SPs. A set of 
local 32-bit registers is available for each SP. The SMs communicate through 
global/device memory. Global memory is large but has high access latency 
(400-800 clock cycles). It can be read or written by the host, and is persistent 
across kernel launches by the same application. 

2.1.2  CUDA Programming Model
At software level, CUDA model is a collection of threads running in parallel. 
A unit of work issued by the host to the device is called a kernel. A CUDA 
program is running in thread-parallel fashion. Computation is organized as a 
grid of thread blocks which consists of a set of threads as shown in Figure 2. 
A thread block is a batch of SIMD-parallel threads, which runs on the same 
SM at a given moment. Each SM executes one or more thread blocks concur-
rently. At instructional level, 32 consecutive threads in a thread block make 
up the minimum unit of execution, called a thread warp. For a given thread, 

FIGURE 1
A set of SIMD stream multiprocessors with memory hierarchy.
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its index determines the portion of data to be processed. Threads in a single 
block communicate through the shared memory.

CUDA consists of a set of C language extensions and a runtime library 
that provides rich APIs for non-graphical applications. Thus, CUDA pro-
gramming model allows the programmers to better exploit the parallel power 
of GPU for general-purpose computing using the infrastructure.

2.2  Traditional WSN Radio Channel Simulation
In radio propagation of a WSN, wireless electromagnetic waves carry data 
packets which are the information a node sends to other nodes. Since signal 
strength of radio waves attenuates during radiation, a data packet can be 
received by a node only if the strength of the radio waves arrives at the trans-
ceiver is larger than a reception threshold. We refer this kind of nodes as com-
munication reachable nodes in this article.

The simulators for regular wireless networks, such as NS-2 [10], 
OMNeT++ [11], cannot simulate native code, and their radio models may not 
be accurate [12]. In most of WSN oriented simulators, such as TOSSIM [4], 
ATEMU [5], Avrora [6], VisuaISense [13], the size of a network can be up to 
10,000, where the simulation of radio channel is omitted or very simple, how-
ever. Naoumov et al. [7] proposed two partitioning-based approaches to 
reduce the search for possible receptors in simulation. One is to divide the 
simulation area into a grid of cells. Only the cells spatially close to the trans-
mitters take part in computation. The other is similar to the former in princi-
ple, but the neighbors of the transmitters are firstly searched by X-coordinate 
or Y-coordinate of the nodes, whereby two rough neighbor sets are produced, 
then the possible receptors is determined by taking intersection of the two 
sets. However, the performance is sensitive to full interference and the mobil-

FIGURE 2 
Serial execution on the host and parallel execution on the device.
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ity of nodes. Eseban et al. [2] investigated WSN simulators and elaborated the 
scalability issue in WSNs. For each transmission of a transmitter, the rela-
tionship between the transmitter and the possible receivers (usually all the 
nodes in a network) is maintained for reception checking, which consumes 
excessive computational and memory resource. Since simulation almost 
involves the computation of the relationships between each pair of nodes in a 
network, the large number of nodes and requirement of credible results result 
in long execution time and huge memory cost.

COOJA [14] is one of the mainstream WSN simulators. The on-node 
native code can execute in COOJA, and communicate with the simulator 
through java JNI calls. Four models are available, from Unit Dist Graph 
Medium model (the standard model) to Multi-path Ray-tracer Medium model 
(a more complicated one with the consideration of full interference). Up to 
now, it is the most detailed radio channel simulation in WSNs. A simulation 
can be configured with a fast but simple or slow but precise model as needed.

2.3  Statistical Models for Radio Channel in WSNs
A statistical model is a good approach to study radio channel, and widely 
adopted in WSNs. It synthesizes large-scale radio variations (distance attenu-
ation and shadow fading) and small-scale radio variation (multi-path fading) 
into mathematical expressions, concentrating on the effect of radio propaga-
tion on upper communication protocols. Since the parameters are obtained 
from a real scenario and it is validated by in-situ measurement, it is consider-
ably accurate. Moreover, its corresponding computation is little or medium 
and acceptable. Baccour et al. [15] gave a survey of the current development 
of statistics-based radio channel models in WSNs, and classified the existing 
research into three categories, PRR-based [16, 17], which counts Packet 
Reception Rate, RNP-based [18, 19], which counts Required Number of 
Packet retransmissions, and Score-based [20, 21], respectively.

2.4  Simulation of Radio Propagation in Wireless Networks using GPUs
There are some works on simulating radio channel in regular wireless net-
works with a physical model using GPUs, where radio signal is far more 
stronger than that in WSNs. Abdelrazek et al. [22] developed an architecture 
to accelerate simulation of multi-path fast fading channels. The extensive 
channel simulation is offloaded to GPU, and CPU is responsible for advanc-
ing simulation time and processing node events. It obtained about 30 times 
speedup compared to a regular implementation on an Intel Core-duo CPU. 
Scott et al. [23] simulates radio propagation in a floor-plan scene using a 
system with multiple GPUs and a multi-core CPU. Similar to [22], GPUs 
take the computation task of ray tracing-based radio propagation. A KD-tree 
is used to manage the objects in a simulation scene and eliminate the unnec-
essary inspection of ray intersection. Experiments showed a 17-times 
speedup over a quad-core CPU implementation. The simulation system is 
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encapsulated into a library and can be linked into an existing discrete-event 
network simulator. It is close to reality to model radio channel physically in 
the form of radiation, reflection, refraction, diffraction, and scattering. How-
ever, it is computation-hungry to obtain fidelity, as shown in [22, 23] for a 
single transmitter.

2.5  CUDA-based Trees
Quad-tree [24] is a classical hierarchical data structure, where each non-leaf 
node has at most four child nodes. It is an efficient approach for spatial data 
organization, and is widely used to search for neighbors in image processing, 
geographic information systems, robotics, etc.

CUDA computing model is announced to be not suitable for irregular 
computation [8]. Thus, little work has been conducted to build trees on GPU 
using CUDA. In a hybrid approach for quad-tree construction [25], the top 
levels of a tree are built on CPU, and then data is transferred to GPU to con-
struct the remaining levels. Best performance is 1.0038 seconds when the 
number of point is 1,000,000. However, no formal publication or code is 
available. Zhou et al. [26] proposed an algorithm for constructing KD-tree on 
GPU, which builds the tree nodes in a breadth-first manner to fully exploit the 
fine-grained parallelism of GPU. Global memory is allocated for tree nodes. 
Experiments on ray tracing and K-nearest neighbors search showed that the 
algorithms are up to 10 times faster than their corresponding CPU implemen-
tations. KD-tree in [23] also resides in global memory, and a short-stack 
residing in on-chip memory is used to maintain the traversal path of each 
thread. It is not suitable for a large network since the size of the traversal 
stack is limited by the size of shared memory.

In simulation of the evolution of galaxies, the computation involves finding 
a large number of neighbors, which is similar to radio channel simulation in 
WSNs. In the worst case, it has to consider all the cosmic bodies, which will 
incur excessive computation. Martin and Keshav [27] built an octree on NVID-
IA’s GPU in simulation. Their Barnes Hut n-body simulation algorithm spent 
5.2 seconds in simulating one time step with 5,000,000 bodies on a 1.3 GHz 
GPU, which is 74 times faster than an optimized serial implementation on a 
2.53 GHz Xeon Core-quad CPU. The tree resides in global memory. Since 
trees are irregular data structures in terms of CUDA’s memory access pattern, 
and the access to global memory incurs high latency, neither building nor 
searching a tree residing in global memory can obtain efficient memory access.

3  SYSTEM FRAMEWORK

In this section, we will describe our proposed CU-Simulator, including what 
components it contains, how it accomplishes the radio channel simulation, 
and how it interacts with the simulation of on-node native code.
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3.1  Overview of CU-Simulator
Since different WSNs deployment environments put different effects on wire-
less communication between nodes, our proposed radio channel simulation is 
oriented toward typical WSNs scenarios. In our simulator, we target the sim-
ulation of a WSN scenario as an abstract 2-dimensional field. The nodes in a 
network are deployed randomly or customized throughout the simulation 
area, static or moving as requested.

Unlike traditional sequential simulators, CU-Simulator places most com-
putation task of a simulation on GPU to achieve performance enhancement. 
There are two functional components in our proposed simulator. 1) Position 
simulation generates positions of nodes in the first run of CU-Simulator and 
is able to adjust the positions dynamically in the subsequent simulation. 2) 
Data transmission simulation simulates data transmission between the nodes 
for a short time interval in parallel using a search-based inspection, which is 
different from existing simulations [14] [23]. We propose CUDA-quad-trees, 
which can reside in the fast on-chip memory of GPU, to organize the nodes 
in the former and speed up the detection of possible transmitters in the latter.

As shown in Figure 3, our proposed process is straightforward. First, the 
positions of the nodes in a network are initialized and then used to construct 

FIGURE 3 
Framework and flow diagram of CU-Simulator.
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CUDA-quad-trees if CU-Simulator is invoked for the first time; if a node 
movement is requested to be simulated, the node movement module will be 
invoked in later runs, and then CUDA-random-bit-moving is used to simulate 
the moving behavior of the nodes, and the newly generated positions will be 
used to reconstruct the CUDA-quad-trees. Second, for each node as a recep-
tor, detect the spatially possible communication reachable transmitters by 
searching CUDA-quad-trees, and then the communication between each 
found potential transmitter and this node is inspected to determine its final 
data reception. Each CUDA thread is responsible for a node, not only gener-
ating its position and inserting it into CUDA-quad-trees but also determining 
a receptor’s data reception from possible transmitters. For each node, CU-
Simulator interacts with the simulation of on-node native code by means of 
data transmission between them. 

To simulate and evaluate the communication between a pair of sensor nodes, 
a statistical model for data packet transmission, which has configurable and 
scene-specific parameters, guarantees that a simulation in CU-Simulator will 
approximate the reality of a WSN in some scenario with acceptable computation.

Wireless communication in a WSN is a course of repeated data transmis-
sion between the nodes. CU-Simulator simulates a short time interval of such 
a process, and is invoked repeatedly to accomplish continuous in-network 
communication simulation.

3.2  Interaction with On-node Native Code Simulation
A complete WSN run consists of wireless communication between the nodes 
and the execution of native code on each node. Our parallel radio channel 
simulator aims to strengthen a WSN simulation by accelerating the former 
simulation, which is a performance bottleneck. It can be combined with the 
simulation of on-node native code in other WSN simulators, which runs on 
the CPU computing platform, producing new data packets that will be trans-
mitted or processing received data packets for each node. There is an interac-
tion between them as shown in Figure 3.

Information about data transmission of each node includes the following 
items: 1) The channel state of the transceiver, which is kept or changed as the 
communication protocol and applications requires; 2) The time stamp of a 
transmitted data packet, which has appropriate values if the node is transmit-
ting a data packet; or else, the starting point of transmitting time is set with 
the upper extreme, the duration of data transmission is set with zero, and then 
such a data packet won’t be processed. 3) The number of bits transmitted in a 
data packet. 4) The output power of the transceiver when the node transmits 
a data packet. The information is set by the simulators for on-node native 
code before each time of radio channel simulation, and then copied to CU-
Simulator as its input.

Information about data reception of each node is as follows: 1) Whether 
a node receives a data packet or not; 2) The transmitter, whose transmitted 
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data packet is received by this receptor; 3) The signal strength of the recep-
tion; 4) Whether the received data is interfered or not. The information is 
output by CU-Simulator, and then copied back and processed by the simula-
tors for on-node native code after an iteration of radio channel simulation in 
CU-Simulator. 

4 � RANDOM NUMBER GENERATION AND NODE POSITION 
SIMULATION

4.1  CUDA-based Random Number Generation
Since the position of a node is stochastic in a real scene and radio propagation 
as well, effort has been made to simulate the characteristics in CU-Simulator. 
Similar to other simulations such as Monte Carlo algorithms, we use random 
numbers to provide a good approximation to reality, where a number of ran-
dom numbers are used in deployment of the nodes, movement of the nodes, 
and the simulation of data packet transmission. Parallel generation of random 
numbers with CUDA has been widely studied and there are a few well-devel-
oped implementations [28, 29]. Therefore, we adopt [29] as our random num-
ber generation method, where different seeds are used to generate multiple 
batches of random numbers for different purpose. 

4.2  CUDA-based Node Position Generation
Due to the weak energy supply of radio transceivers, only the neighboring 
nodes of a node can receive its data packets in a WSN. Thus, the spatial rela-
tionship between every pair of nodes is an important factor that determines 
whether the communication between these two nodes will succeed or fail. To 
achieve a good simulation performance, we implement the node position 
simulation on GPU. This part of simulation includes deployment of nodes 
and movement of nodes, which are suitable to be parallelized by CUDA 
where each CUDA thread is responsible for a node. Similar to the 2-dimen-
sional deployment of the nodes, CUDA threads are configured as a 2-dimen-
sional grid. Meanwhile, they are processed in the fast on-chip memory of 
GPU.

Node deployment. Three approaches are provided to produce positions 
for all nodes. 1) Load the positions from a pre-specified file; 2) Specify the 
positions as a 2-dimension regular grid with an equal interval between neigh-
boring nodes. The indices of CUDA threads and a predefined parameter for 
the interval between two adjacent nodes are combined to generate the coordi-
nates of nodes in parallel. 3) Initialize the positions in a random manner, 
making a grid with different intervals between neighboring nodes. In such a 
deployment, coarse-grained coordinates of nodes are firstly produced as in 
(2). Then, the predefined interval and random numbers are used to drift the 
rough coordinates a little bit to generate the final coordinates of the nodes. In 
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order to make node deployment more “random”, we let some positions gener-
ated by some threads invalid as long as the corresponding random number is 
equal to a pre-specified value.

Node movement. We propose an approach, called CUDA-random-bit-
moving, to simulate the movement of each node in a deployed area, where 
random numbers are used to control directions and offsets of the movement 
of a node. Table 1 demonstrates how the x coordinate of a node is updated 
after moving from its original position. A bitwise and operation of a random 
number with 0x1 determines the moving direction in the x coordinate, that is, 
forward or backward; a bitwise and operation of the random number with 0x7 
determines the moving distance in x coordinate. Moving speed can be 
adjusted by replacing 0x7 with another constant value. If a node close to the 
boundary of the deployed area moves to a position beyond the boundary, the 
updated coordinate will be switched to a valid value by adding or by subtract-
ing the span of the deployed area in the corresponding coordinate. For exam-
ple, if the updated value in x coordinate is less than 0, it will be adjusted by 
adding the span of the deployed area, then the new value of x coordinate will 
be a value close to the maximum valid value in x coordinate. 

5 � CUDA-QUAD-TREES FOR ACCELERATING NODE  
DETECTION

In order to cut down the cost for possible transmitter detection, we propose a 
novel data structure, called CUDA-quad-trees, which resides in the fast on-
chip memory of GPU, and is used to organize the nodes in network. Our 
proposed data structure facilitates the search for potential transmitters.

5.1  Organization of Nodes in a WSN
CUDA-quad-trees are like a forest, consisting of many small-scale quad-
trees. The entire node deployment area is partitioned into many equal sized 
square regions, each of which contains a small number of nodes (In our 
experiment, the threshold is set as 64, that is, at most 64 nodes are allowed in 
a square region). A CUDA-quad-tree is used to organize the nodes in a given 

(1)   if (random_number & 0x1) {  // move forward

(2)      new_coord_x = old_coord_x + (random_number & 0x7);

(3)   } else {                                     // move backward

(4)      new_coord_x = old_coord_x - (random_number & 0x7);

(5)   }

TABLE 1 
Pseudo code for the movement of a node in x coordinate.
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square region. During its construction, as shown in Figure 4, the square 
region is firstly divided into four equal sized sub-squares region, and then, 
each sub-square region, which contains more than one sensor node, is split 
into four sub-squares region recursively. In this way, spatially closed sensor 
nodes finally locate in sibling nodes of a CUDA-quad-tree. For example, Fig-
ure 5 shows a built CUDA-quad-tree for the square region in Figure 4.

The nodes in a WSN are usually deployed in a restricted area. Although 
small drifts in altitude may happen, a 2-dimensional coordinate is precise 
enough to distinguish the sensor nodes in space. Therefore, a 2-dimensional 
quad-tree structure is adopted in this paper. This decision not only complies 
with the current characteristic of node deployment in WSNs, but also mini-
mizes the cost for building and searching the trees in terms of both memory 
and computation. For an unusual stereoscopic deployment, the quality of 

FIGURE 4
Iterative 2-dimensional partition of a square region.

FIGURE 5 
A CUDA-quad-tree for the nodes in Figure 4.
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search in CUDA-quad-trees will be remedied by inspection of data packet 
reception between a pair of nodes later. Meanwhile, compared with a single 
and big tree, a collection of small trees maximizes the parallelism of CUDA 
threads in tree construction stage, a CUDA-quad-tree is small enough to reside 
in the fast on-chip memory of GPU. Thus, high latency of access to global 
memory is eliminated, leading to a considerable performance improvement.

5.2  On-chip Quad-tree Construction
In the CUDA-quad-trees construction stage, each thread block builds a 
CUDA-quad-tree for a square region, where each thread holds a sensor node 
and performs an insertion. To facilitate neighborhood searching in a CUDA-
quad-tree, we refer a non-leaf node in the tree as a virtual node, which is a 
sub-square region. For example, in Figure 4 root virtual node represents the 
entire square region. To store a CUDA-quad-tree, we allocate an array with 
pre-defined size in shared memory to maintain the tree structure. When a new 
sensor node is inserted into the CUDA-quad-tree, a non-occupied position of 
the array backward will be used to store the information of the current node. 
Every tree is built in shared memory. Then, each built CUDA-quad-tree is 
stored into global memory in a memory coalescing access manner through 
the cooperation of all the threads in the working thread block.

As shown in Figure 6, it is a course of repeated attempts for a thread to 
insert a sensor node to construct a CUDA-quad-tree, and each thread com-
petes with others for a chance to insert its node. First of all, thread 0 initial-

FIGURE 6 
A thread’s insertion of a sensor node for a CUDA-quad-tree construction.
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izes the root virtual node with four non-occupied child tree nodes. Then, each 
thread looks for an appropriate leaf tree node for insertion. When such a 
position is found, one thread locks this position since some other threads are 
also trying to insert their sensor nodes at this position at this moment. Then, 
the held sensor node is placed into this position; that is, the node is written 
into the information array. At last, the thread unlocks this position, and quits 
insertion. If a thread fails to lock a position, it will wait for the next chance to 
insert. If the position, which is found and locked by a thread in the second 
round, has been occupied by a sensor node, the thread will have to replace the 
existing tree node with a new sub-tree and four non-occupied child tree nodes 
are created at this position, and then insert the existing and held sensor node 
into this sub-tree, unlocks this position, and quits insertion. The rest of the 
threads in the thread block keep trying repeatedly until all held sensor nodes 
have been placed in a leaf tree node of the CUDA-quad-tree as illustrated in 
Figure 6.  

5.3  Searching On-chip Quad-trees
Due to the limited communication range of sensor nodes, the potential com-
munication reachable nodes of a node must locate in its neighborhood. Since 
CUDA-quad-trees organize sensor nodes in terms of spatial closeness, the 
possible transmitters of a node can be found with a low computational cost. 
According to the communication range of radio transceivers, the superposi-
tion of the communication areas of all the sensor nodes held in a thread block 
will be determined, that is, a subset of a number of square regions. Then, the 
corresponding CUDA-quad-trees are looked through one by one to find all 
the communication reachable nodes for each node held in the thread block 
concurrently. The deeper the search in a tree is, the smaller the search area is. 
In order to optimize the memory access during the tree search, we firstly 
make all the threads in a block cooperate to load a CUDA-quad-tree from 
global memory to shared memory, and then, process the tree in the shared 
memory.

Figure 7 illustrates how a thread warp in a thread block performs a depth-
first search in a CUDA-quad-tree. We make all the threads in a warp follow 
the same tracing path, thus, the warp maintains only two drilling information 
from the root to the leaves. One is the depth from the root node to the current 
visiting one, the other is a stack storing the indices of each being visited node 
among its siblings at different depth. When a CUDA-quad-tree is in shared 
memory, the warp traverses from the root node downward. Three kinds of 
nodes will be visited:

(1)	 A non-leaf node (a virtual node). Each thread in a warp tests whether 
the communication range of its held sensor node overlaps with the cov-
ered area of the virtual node or not. If there is an overlap, no matter how 
many threads meet this condition, the sub-tree of this virtual node will 
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be visited; otherwise, the warp skips this node and its sub-trees, and 
turns to its next sibling.

(2)	 A leaf node placed with a sensor node. Each thread in a warp tests 
whether the held sensor node can communicate with this sensor node in 
terms of distance or not, then determines if data transmission inspec-
tion should be invoked.

(3)	 A blank leaf node. The warp turns to its next sibling node in the current 
sub-tree.

Different with a single big tree maintained in global memory in the existing 
researches, the small on-chip CUDA-quad-trees allow an efficient memory 
access, which is critical in tree search. The CUDA threads work as a warp 
unit so as to prevent branch divergence.

6  SIMULATION OF DATA PACKET TRANSMISSION

In this section, we firstly present the type of radio channel models suitable for 
CU-Simulator; then, a PRR-based channel model, which has been imple-
mented in CU-Simulator, is introduced; finally, we present how our search-
based transmitter inspection accomplishes a simulation in parallel.

FIGURE 7

A thread warp’s search in a CUDA-quad-tree.
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6.1  Statistical Radio Channel Models
Most statistical radio channel models are derived from a combination of ana-
lytical and empirical methods. They implicitly take into account all related 
factors from both wireless environment and radio hardware, known or 
unknown, by actual field measurements. Mathematical expression with con-
figurable parameters also makes it easy to be implemented at low or medium 
computational cost in simulation. Thus, we adopt such a kind of available 
models in CU-Simulator to simulate and determine data packet transmission 
between a pair of sensor nodes. Common WSN deployment scenarios can be 
simulated with appropriate configuration, which can refer to some existing 
research [15] or manual measurements in a particular scenario. What’s more, 
the radio propagation characterization of a target deployment scenario can be 
approximately simulated by implementing a customized model with more 
measurement effort to get an accurate simulation.

6.2  A PRR-based Channel Model
The radio model developed in [16] is a popular and widely applied one, which 
is used to estimate radio link quality in a WSN. This abstraction combines 
channel model with radio-receiver model, which indicates the effect of radio 
hardware on radio propagation. In this model, the received signal strength 
(RSS) is expressed as a function of distance, and so does the packet reception 
rate (PRR). 

Received Signal Strength: When an electromagnetic signal propagates, it 
may be diffracted, reflected, and scattered. These effects have two important 
consequences on the signal strength. First, the signal strength decays expo-
nentially with respect to distance. Second, for a given distance d, the signal 
strength is random and log-normally distributed about the mean distance-
dependent value. The received power (Pr) in dBm is given by

	 P d P PL d
d

dr t( ) = − ( ) −




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+ ( )0 10
0

10 0η σlog , 	 (1)  

where d is the transmitter-receiver distance, d0 is a reference distance, η is the 
path loss exponent that captures the rate at which the signal decays with 
respect to distance, (0, σ) is a Gaussian random variable with mean 0 and 
variance σ (standard deviation due to multi-path effects), Pt is the output 
power, and PL(d0) is the power decay for the reference distance d0.

Packet Reception Rate: The receiver response denotes the ratio of the number 
of successfully received packets to the number of transmitted packets. It is 
derived from a serial of equations, which depends on the modulation schemes 
of a radio that are widely available in the wireless communication literature, 
and finally described as a function of distance d.
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The packet reception rate is derived from the bit error rate (βE), the expres-
sion is as follows:

	 Ψ = −( )1
8

bE

f
	 (2) 

Where f is the number of bits transmitted in a data packet.

The bit error rate expression βE is a function of a, the 
E

N
b

0

 ratio, and its 

definition depends on the adopted modulation scheme. Regarding FSK non-
coherent modulation scheme, for example, βE is defined as:

	 β
α

E exp=
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The relation between signal to noise ratio (SNR) γ  and 
E

N
b

0

 is given by:

	 γ =
E

N

R

B
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N0

	 (4) 

Where R is the data rate in bits, and BN is the noise bandwidth. So, a can be 
derived as a function of γ  from this expression.

Given a transmitting power Pt, the SNR γ  at a distance d is:

	 γ(d) = Pr(d) - Pn	 (5) 

Where Pr (d) can be obtained from Eq. (1) and Pn is the noise floor.
Providing a simulation is positioned to a deployment scenario and all the 

corresponding parameters are determined according to literature or measure-
ments, there are two mathematical expressions as functions of distance to be 
processed in simulation.

To calculate the bit error rate (βE), we implement the mathematical expres-
sion with respect to FSK non-coherent modulation, which is typical for sub-
GHz bands. According to IEEE 802.15.4-2006 standard [30], we also 
implement the following equation:
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which is typical for the widely used 2.4 GHz band. For those parameters 
whose values in a sensor node may be different with those in other sensor 
nodes, such as Pr (d), the parameters are maintained on node. For the param-
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eters which are consistent in all the sensor nodes in a network, such as η, only 
the global variables are maintained.

6.3  Search-based Transmitter Inspection
Different from traditional sequential wireless channel simulation, our pro-
posed simulation framework creates one module, search-based transmitter 
inspection using CUDA-quad-trees. Each sensor node is held by a CUDA 
thread as a receptor, and its possible transmitters are inspected. All CUDA 
threads work simultaneously to accomplish the simulation of all in-network 
data transmission for a short time interval. The search based approach bene-
fits from the computational power of GPU and CUDA-quad-trees for accel-
eration.

In this module, each thread block takes charge of a square region, a thread 
holds a node. The threads in the block look up a number of neighboring 
CUDA-quad-trees, using the approach described in sub-section 5.3, to obtain 
the possible communication reachable nodes for the held nodes. As a recep-
tor, all the possible transmitters discovered are inspected one by one to 
determine its data reception. We analyze data transmission between the 
receptor and a possible transmitter in terms of the frequencies of the trans-
ceivers, the distance between the nodes, and the time stamps of the data 
packets. Based on the fact that the radio medium is shared by sensor nodes, 
the possible data packets from different transmitters are compared to find out 
whether the receptor receives a data packet or not, if a packet is received 
which transmitter’s data packet is received and whether the reception is 
interfered or not. 

When a possible transmitter is detected, the communication between the 
receptor and this transmitter will be examined to determine whether there 
should be a data transmission between them. First of all, consistency of the 
two channels and whether the transmitter is sending a data packet are checked 
to determine whether there is a probability of data transmission between 
them. Next, the distance between these two nodes is used to calculate and 
determine whether the receptor can receive the data and its reception quality. 
(A percentage generated from a random number is compared with the calcu-
lated PRR to determine whether the transmitted data packet should be 
received.) If they are on the same channel, the transmitter is sending data, the 
receptor is within the communication reachable range of the detected trans-
mitter, then, time stamps are used to conclude the comparison. There are four 
possible cases: 

(1)	 It is the first data packet detected, and thus, the information of this 
transmission will be stored; 

(2)	 The detected data packet is earlier than the stored one, so, discard the 
old one and store the newly detected one; 
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(3)	 The time of the detected data packets overlaps that of the stored one, 
then, keep the one which has an earlier beginning time, and the received 
packet is considered as being interfered; 

(4)	 The detected data packet is later than the stored one, then, the detected 
data packet will be discarded. 

The received data packet of the receptor will be determined by the inspection 
of the communication between the receptor and each found possible trans-
mitter, and the stored data transmission will be the right one.

7  PERFORMANCE EVALUATION

7.1 Scalability Analysis

7.1.2  Space Complexity
Different from frameworks in traditional simulators, our simulation frame-
work adopts a search-based strategy to eliminate the memory bottleneck in 
simulation. A small set of data for each node and a moderate set of data for 
each CUDA-quad-tree, are maintained by CU-Simulator. The memory over-
head of a simulation in CU-Simulator is negligible.

Table 2 shows the data parameters used in our simulator and their sizes 
and the memory locations as well. The buffer size of a node is set at 128 bytes 
according to the hardware specification of mainstream sensor nodes. The 
memory space needed by a node on the host memory adds up to 281 bytes, 
where the data buffers dominate. The memory space needed by a CUDA-
quad-tree is pre-specified according to the maximum number of nodes in a 
square region. Assuming that every square region has such number of nodes, 
the memory cost of a CUDA-quad-tree can be transformed and merged into 
that of the nodes in its corresponding square region when divided by this 
threshold, MOST_NODES (64 in our experiment). Thus, the average mem-
ory cost per node on the device is 113.1875 bytes, including the cost for a 
sensor node and transformation from a CUDA-quad-tree. For a device with 4 
GB memory, a network with 35.3396 million nodes can be simulated in CU-
Simulator as long as 9.93 GB memory on a host is available.

The data transmission between the host and the device is also small as 
shown in Figure 8. Before a simulation begins, the communication channel 
set by on-node software, the time stamp and frame size of a data packet, and 
the output power of a transmitter, are copied from the host to the device. 
When a simulation is completed, the signal strength and the index of the 
received data packet are copied back and processed by on-node software. 
There is only 25 bytes transmitted per node, and such a small transmission is 
negligible, which is verified by our experiment.
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Type Parameter Size
Memory 
location

A sensor 
node

Communication channel of a node 1 char Host & device

Output power of a transmitter 1 float Host & device

Frame size of a packet in bits 1 short Host & device

Transmission starting time of a packet 1 long Host & device

Transmission duration of a packet 1 short Host & device

Signal strength of a received packet 1 float Host & device

Index of a receive packet 1 int Host & device

Transmission buffer per node 128 bytes Host

Reception buffer per node 128 bytes Host

Coordinates of a node 2 floats Device

Random numbers for node deployment 2 floats Device

Random numbers for node movement 2 floats Device

Random number generation for 
inspection of data packet reception

40 bytes Device

A 
CUDA-
quad-tree

Coordinates of non-leaf nodes
MOST_NODES *  
2 floats

Device

Array for node organization
(MOST_NODES *  
4 + 1) ints

Device

Bottom and depth of a CUDA-quad-tree 2 ints Device

TABLE 2
Parameter summary and memory cost in a simulation.

FIGURE 8 
Data exchange between the host and the device.

7.1.2  Time Complexity
To minimize the effect of memory access on performance, we perform com-
putation in the manner recommended by NVIDIA. Firstly, copy data from 
global memory to shared memory in an efficient memory-coalescing way; 
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next, perform the computation in shared memory; finally, store the results 
back to global memory in an efficient memory-coalescing way. All kernels in 
CU-Simulator follow such a data access pattern so as to let the computation 
of a thread block hide memory access latency from other thread blocks.

There are four core computations in CU-Simulator, where each thread 
holds a sensor node and perform some computation. The time complexity of 
a thread in each computation is as follows:

(1)	 Node deployment or movement is straightforward. Coordinates gener-
ation or regeneration using random numbers and several basic mathe-
matical computations is trivial, as illustrated in Table 1.

(2)	 CUDA-quad-trees construction or reconstruction inserts nodes into a 
tree. Time complexity on each node is O(ht), where h is the height of a 
CUDA-quad-tree, t is the number of insertions. The worst case happens 
when a CUDA-quad-tree is something like a link list. At that time, both 
of these variables are no more than the pre-defined threshold.

(3)	 Searching CUDA-quad-trees is to find the neighboring nodes for the 
held node in several CUDA-quad-trees. The time complexity is O(mn), 
where m is the number of trees inspected and n is the number of the 
average visited nodes in each CUDA-quad-tree. The transmitting range 
of a transceiver is constant, thus m is fixed. In the worst case, n is the 
number of the nodes in a CUDA-quad-tree where it is no more than the 
threshold.

(4)	 The inspection of data packet reception between the held node and a 
possible neighbor node, as in (3), is straightforward with comparison of 
the fixed number of parameters, in which there are the calculations for 
distance, a log-normally distributed variance, the received signal 
strength, a uniformly distributed random number and the packet recep-
tion rate. So, each thread has a constant computation.

The time complexity of CU-Simulator is O(N/SPs), where N denotes the 
number of threads in any kernel (approximating to the number of nodes 
deployed in a simulation), and SPs denotes the number of stream processors 
in a GPU which is a constant value. Thus, CU-Simulator has a linear scal-
ability.

7.2  Experimental Results

7.2.1 Experimental Setup
The device we used in our experiment is a NVIDIA’s Tesla C2070 card, 
which is a dedicated general-purpose computing GPU with 448 stream pro-
cessors (1.15 GHz) and 6 GB global/device memory. NVIDIA driver 
270.41.19, CUDA Toolkit and software development kit of version 4.0 are 
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installed. All the experiments are performed on an HP Z800 workstation with 
a Core-quad 2.93 GHz Intel Xeon CPU and 8 GB main memory, running Red 
Hat Enterprise Linux WS 6.0 operating system. Traditional programs on CPU 
are compiled by java 1.6.0 or gcc 4.4.4.

We measured the total execution time of data transmission simulation for 
all nodes in milliseconds or microsecond, abbreviated as ms and µs, respec-
tively. The time of CU-Simulator includes the kernel cost, as well as the cost 
of memory copying between the host and device. In the scalability analysis, 
node movement is taken into account to demonstrate the performance of CU-
Simulator in the worst case. For a fair play, however, node movement is 
removed from our simulation when comparing with COOJA since COOJA 
doesn’t support such operation. To obtain a reliable result, the execution time 
of each experiment is measured as an average of 10 runs.

7.2.2 Scalability
We make our simulation configuration as the experiment in [16]. An outdoor 
environment (football field) and mica2 motes, which use FSK non-coherent 
modulation at 915 MHz, are simulated. The output power Pt is set as 0 dBm, 
the reference distance (d0) of the log-normal model is set at 1 m and its cor-
responding power decay is 55 dB. Following the measurement in [16], the 
path loss exponent η is 4.7, the standard deviations σ is 3.2, the noise floor Pn 
is -105 dBm. For mica2 motes, R = 19.2 kbps (data rate) and BN = 30 kHz 
(noise bandwidth). 

The execution time of simulations in CU-Simulator with varying network 
size is shown in Table 3. When the number of nodes is small, the execution 
time is quite close. The reason is that the size of a network is not large enough 
to make all the stream processors in the GPU work at full speed and the 
access latency to device memory is not well hidden by computation. Once the 
number of nodes in a network is over 14,400, the average execution time per 
node decreases not too dramatically when increasing the nodes in the net-
work. Generally speaking, the scalability of CU-Simulator is super-linear. 
That is, the more nodes, the less execution time per node CU-Simulator con-
sumes.

Table 4 presents the execution time of the main functional components in 
CU-Simulator when varying the size of a network. The characteristic is simi-
lar to what we see in Table 3. The experiments show that time consumed per 
node in all components drops, and data transmission simulation dominates 
each simulation when increasing the number of nodes in a network, even 
takes most of the execution time of the entire simulation when a network is 
large. Node movement spends a little more time than node deployment since 
some nodes move between different square regions, which incurs an expen-
sive storage cost of global memory. In fact, CUDA-quad-trees construction is 
very fast, whose effect on performance is negligible. 
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Deployed nodes Execution time (ms) Time per node (µs)

1,000,000 114.86 0.1149

640,000 73.98 0.1156

160,000 19.81 0.1238

40,000 6.09 0.1524

14,400 3.03 0.2103

9,216 2.71 0.2942

6,400 2.07 0.3231

4,096 1.96 0.4773

2,304 1.92 0.8342

TABLE 3 
Execution time of simulations with varying network size.

Number of 
nodes in a 
network

Node deployment 
(ms)

Node movement 
(ms)

Data transmission 
(ms)

Memory copy 
between host and 

device (ms)

640,000 3.809 6.783 61.050 6.150

160,000 1.300 2.035 15.637 2.141

40,000 0.803 1.018 4.361 0.715

14,400 0.709 0.782 1.862 0.384

9,216 0.687 0.732 1.641 0.338

6,400 0.661 0.685 1.099 0.284

4,096 0.659 0.674 1.031 0.250

2,304 0.656 0.670 1.020 0.211

TABLE 4 
Comparison of the execution time of different components in CU-Simulator.

7.2.3  Compared with COOJA
COOJA with its standard channel model, Unit Disk Graph Medium: Distance 
Loss (UDGM), was adopted as the testing counterpart in our experiments. To 
be consistent with UDGM, we implement the above model in our parallel 
radio channel simulator. Since broadcast is the most common and basic oper-
ation in wireless communication, we choose it as the benchmark and test one 
broadcast. While COOJA runs a Contiki [31] program, example-broadcast.c, 
CU-Simulator performs one inspection of data transmission for all the nodes 
in the network. The number of nodes in a network is varied in our experi-
ments. Consistent with COOJA’s setting, the reception threshold of a trans-
ceiver is 200 meters, and the interference threshold of a transceiver is 400 
meters.
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We present a comparison of the execution time between CU-Simulator 
and COOJA, shown in Table 5. When the number of nodes in a network is 
small, COOJA behaves better than CU-Simulator. This is because CUDA 
programs run on many-core processors in a thread-parallel way. When the 
number of nodes is large, the parallel superiority of GPU becomes evident. 
Along with the growth of network scale, the execution time of CU-Simulator 
increases slowly, while the execution time of COOJA increases far faster than 
linear complexity. When over 40,000 nodes are in the network, CU-Simulator 
achieves 452.07 times speedup. 

Apart from radio channel, COOJA can simulate the execution of on-node 
native code, and a great effort has been made to handle the interaction with 
users. A run of COOJA consumes much more time and memory than the 
radio channel simulation. When the number of nodes is over 40,000 in a net-
work, COOJA costs more than 2.5GB memory and more than 24 hours. Thus, 
we didn’t measure the cost when the size of a network is over 40,000 in 
COOJA. 

8  CONCLUSIONS

In CU-Simulator, the parallel search-based inspection of possible transmit-
ters, not only brings GPU’s enormous computational power into full play, but 
also eliminates the memory bottleneck of radio channel simulation. A group 
of small-scale quad-trees makes good use of fast on-chip memory to improve 
the efficiency of tree access, and minimizes the cost for search in simulation. 
Furthermore, the limited data exchange ensures that CU-Simulator can coop-
erate with a CPU-based simulation of on-node native code efficiently to 
accomplish a comprehensive and detailed simulation of a WSN. Experiments 
show that CU-Simulator is superior to a mainstream CPU-based implementa-

Deployed nodes CU-Simulator (ms) COOJA (ms)

40,000 5.38 2432.15

14,400 2.67 143.22

9,216 2.58 46.03

6,400 2.01 20.67

4,096 1.85 16.19

2,304 1.78 2.51

1,024 1.73 0.49

256 1.46 0.04

TABLE 5 
Execution time with varying number of nodes in a network.
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tion of radio channel simulation, where 452.07-times speedup is observed in 
the best case. Super-linear scalability is also observed in our experiments. 
Therefore, we believe CUDA-enabled GPU parallel computing architecture 
is able to provide a great benefit to simulation of radio channel in WSNs.
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