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This paper presents an error correction method known as restorative
feedback (RFB) that provides error-correction for both permanent and
temporal logic faults in any M-ary logic system. The RFB method is a
variant of triple modular redundancy (TMR), which achieves error cor-
rection in logic circuits by using three-fold redundancy. Unlike TMR,
the RFB method has well-defined application to arbitrary M-ary logic
systems as well as conventional binary logic circuits. The RFB method
also uses a feedback mechanism to suppress transient errors, result-
ing in a lower error probability than TMR when considering transient
upsets. The underlying theory of RFB is presented as an adaptation of
stochastic error correction theory. Two circuit-level proof-of-concept
demonstrations are presented, which include a binary implementation
using Muller C-elements, and a ternary implementation based on Semi-
Floating Gate logic circuits. The error-correcting performance of these
circuits is evaluated using logic-level simulations as well as device-
level simulations in Spectre. Bit and symbol error rates are also com-
puted using Monte Carlo simulations which demonstrate that the RFB
method is superior to traditional TMR for a variety of cases. An applica-
tion of the RFB method is also demonstrated using redundant gate-level
synthesis of multiple-valued ripple-carry adder circuits. The application
circuits are simulated using an abstract noisy-logic model, and the RFB
method is shown to significantly improve the circuits’ noise immunity.

Keywords: Error correction, restorative feedback, triple modular redundancy,
reliability.
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1 INTRODUCTION

Manufacturing trends in CMOS logic have resulted in nanometer-scale tran-
sistor devices that are increasingly sensitive to noise fluctuations and man-
ufacturing defects. At the same time, the density of integration is increas-
ing both in terms of planar circuits and three-dimensional integration. This
trend leads to higher thermal density, resulting in a harsher noise environ-
ment and an increased likelihood of damage to devices and interconnect in
highly-integrated circuits. In addition to these trends in CMOS technology,
several new technologies have emerged as candidates for “post-CMOS” logic
devices. These technologies, which include carbon nanotube FETs and nano-
wire logic among others, are expected to be even more susceptible to defects.

For several decades the CMOS logic industry has been driven by a con-
tinual scaling of device dimensions and the resulting improvements in large-
scale integration and switching speed. Although binary logic techniques have
proven to be highly profitable during this period, there has been steady inter-
est in alternative multiple-valued logic circuits. Multiple-valued logic sys-
tems may offer improvements in physical efficiency and, ultimately, may
increase the effective density of computations compared to binary circuits.
Unfortunately they are also inherently more sensitive to noise fluctuations
than are binary circuits. While there has been considerable progress in devel-
oping error-correction and fault-compensation strategies for binary logic,
there has been comparatively little progress in such techniques for multiple-
valued circuits and systems. This paper presents a new error-correction
method that is suitable for multiple-valued logic circuits as well as traditional
binary circuits.

The new method – called Restorative Feedback (RFB) – is closely com-
parable to the method of Triple Modular Redundancy (TMR) [8], and may
be considered to be an improved version of TMR. Among the available
binary error-correction schemes, TMR is perhaps the simplest and most
widely understood technique. Several researchers have proposed using mod-
ular redundancy strategies to compensate for faults in nano-scale CMOS and
post-CMOS logic circuits [7,10,13,20]. In the standard TMR scheme, a logic
operation is replicated three times, usually by three parallel, independent
modules. Then, for each desired logic output x , there are three corresponding
signals x1, x2, and x3, each of which may be correct (xi = x) or incorrect
(xi �= x). The probability of error on each signal xi is assumed to be indepen-
dent from that of the other signals, and is equal to some small constant η. The
TMR output y is obtained by taking the majority value over the three inputs.
Hence the output y is correct if any single error occurs among the xi , but two
or more simultaneous errors will cause the error to propagate onto y.
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In order to compensate for faults that occur within majority gates, the
TMR scheme may be implemented using three parallel majority operations.
The TMR system may then be used in a fully-redundant cascade configu-
ration in which majority operations occur periodically at points dispersed
throughout a logic pipeline [21,22]. The rate of intrinsic errors within major-
ity gates is then absorbed into the η parameter of some downstream majority
operation. By using the fully-redundant cascade approach, the error rate in a
large system is iteratively suppressed as a signal propagates through succes-
sive stages of computation and restoration.

Unfortunately the TMR method introduces some ambiguity when applied
to multiple-valued logic systems. In a binary logic circuit, there is always a
clear majority value. This is not the case in a multiple-valued circuit, because
it is possible for each of the xi signals to carry a distinct value. In this case
the majority gate’s output is undefined. Nanduri proposed using the “average”
value of all three signals in this case [12]. The problem with this solution is
that multiple-valued logic systems do not typically identify logic levels with
signal levels. Rather, the signal level is an artefact of implementation, and
the meaning of “average level” is not clear for abstract M-ary algebras. The
Nanduri-TMR method is therefore limited to special cases in which there is
a clear logic interpretation for the average signal level.

The RFB approach detailed in this paper is similar to fully-redundant cas-
caded TMR, but its behavior is well-defined for multiple-valued circuits.
Hence, the RFB method can be applied as a general-purpose solution for
error-correction in any M-ary logic system. The RFB method was previously
introduced by the authors in [26]. In this paper, we provide additional details
on the underlying theory of the RFB method, and also present additional
examples of the RFB method applied to practical logic cases. The remainder
of this paper is organized as follows. Section 2 presents the basic theory used
to obtain the restorative feedback method and high-level simulation results.
Section 3 presents a binary static CMOS circuit for the restorative feedback
method, and provides simulation results obtained from Spectre. Section 4
proposes a CMOS semi-floating gate implementation for multiple-valued
logic. Section 5 presents simulation results for the RFB method applied to
multiple-valued ripple-carry adder circuits. Finally, Section 6 offers conclu-
sions and items for further research.

2 ERROR SUPPRESSION THROUGH RESTORATIVE
FEEDBACK

The restorative feedback method relies on the use of Muller C-elements
instead of majority gates. The C-element is a well-known gate that has long
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been used in asynchronous circuit design [11], and was more recently recog-
nized for its inherent fault-compensating abilities [4,5,28]. The C-element is
logically defined as a two-input latch with inputs x , y and output z. A new
value is latched for z whenever x = y, so that the output equals the unani-
mous inputs, i.e. z = x = y. If x �= y then the output retains its latched value.
Although the C-element is traditionally considered to be a binary logic gate,
this definition applies equally well to multiple-valued logic systems.

Researchers previously described several error-correction methods based
on C-elements. These include “Duplicated Dual Checking” (DDC), a dual-
modular redundancy method intended for use in asynchronous logic [4,5], the
BISER-FF method for compensating timing errors in synchronous circuits
[28]. The BISER-FF method has been extended by several authors leading
to a family of solutions for error-compensation. The DDC, BISER-FF and
related methods are all feed-forward error correction techniques that provide
compensation for soft faults, but are not suitable for protecting against hard
faults. The Restorative Feedback method presented in this paper provides
stronger protection against transient faults, and is able to correct hard faults
as well.

In most of the work published to date on error correction with C-elements,
a straightforward logic-case analysis is used, which can be generically
described as follows. The C-element may be used to correct momentary faults
if its inputs x and y are two redundant copies of the same logic value. Under
normal conditions the two inputs should be equal and change at the same
time. If a momentary error appears on only one of the signals, then the out-
put remains unaffected. Hence the C-element can correct any single momen-
tary error using only two redundant signals. As with TMR, two simultaneous
errors will cause an error to propagate at the gate’s output. This case analy-
sis helps to visualize the error correcting capabilities of the C-element, but a
more precise understanding is obtained by analyzing the gate’s error statis-
tics. To perform this analysis, we propose using an approach derived from
stochastic iterative decoding, as explained in the next subsection.

2.1 The stochastic decoding interpretation.
In 2003 Gaudet and Rapley proposed stochastic decoding as a probabilistic
approach to iterative error correction [3]. Stochastic decoders implement soft
error correction algorithms by filtering streams of randomly toggling bits.
This concept has been further developed in recent years by one of the authors
(Winstead), and by Tehrani, Gross, Mannor and others [15–19,24]. Beginning
in 2005 the author proposed using stochastic decoding methods to process
and reduce the native error probabilities in switching devices [23, 25, 27].
The restorative feedback method proposed in this paper is derived using that
strategy.
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The stochastic decoding approach is a realization of the widely used sum-
product algorithm for iterative error correction. In a stochastic decoder, all
signals are considered as stochastic streams which vary randomly over time.
A stochastic stream may be defined as a signal x (t) which takes values ran-
domly from a discrete symbol alphabet X . At any given time t , the value x (t)
is an independent sample of a random variable X (t) with probability mass
function ρx (x, t). The stochastic stream is also assumed to be a memoryless
process, so that two samples x (t1) and x (t2) are statistically independent if
they are observed at different times t1 �= t2.

In this paper we consider a logic signal to be a stochastic stream for which
one value, x∗, is correct, but other erroneous values may occur at random due
to transient noise fluctuations. By using this interpretation, we can employ
the methods of stochastic decoding to improve error probability at the gate
level in a logic system.

The equality operation
In this paper we are concerned with one specific type of sum-product oper-
ation, which is often called the equality node operation, using terminology
introduced by Forney’s “normal” factor graph approach [2]. The equality
node’s behavior is described as follows. Suppose the node has two inputs,
X and Y, which are random variables that represent independent noisy obser-
vations of the same “true” value x∗.

The variables X and Y are characterized by probability mass functions
ρx (x) and ρy (y), respectively, where ρx (x) = Pr (X = x). The equality oper-
ation computes the outgoing message for Z as

ρz (z) = αρx (z) ρy (z) , (1)

where α is a normalizing constant given by

α =
(∑

x∈X
ρx (x) ρy (x)

)−1

. (2)

The result of this operation is that the output probability mass function, ρz ,
tends to be more concentrated around the true value. To show this, consider
the likelihood ratio lx , defined as

lx = Pr (X = x∗)

Pr (X �= x∗)
= ρx (x∗)∑

x �=x∗ ρx (x)
(3)

and we similarly define the log-likelihood ratio (LLR) as Lx = log lx . We
may interpret the LLR as a measure of confidence that an observation of X
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is correct. If Lx → ∞, then we can be absolutely certain of a correct obser-
vation. On the other hand, if Lx = 0, then the observation is no better than a
fair coin toss. Based on this interpretation, the circuits developed in this paper
rely on the following theorem.

Theorem 1. The output from an equality operation satisfies Lz ≥ Lx + L y.

Proof. It is easily shown that lz ≥ lx ly , because

lx ly = ρx (x∗) ρy (x∗)(∑
x �=x∗ ρx (x)

) (∑
y �=x∗ ρy (y)

) (4)

≤ ρx (x∗) ρy (x∗)∑
x �=x∗ ρx (x) ρy (x)

(5)

= lz (6)

Based on this theorem, the equality operation may be described as a
confidence-amplifying operation. If Lx and L y are both greater than zero,
then the output confidence Lz exceeds the confidence of either input.

The Muller C-element
To provide a stochastic realization of the equality operation, Gaudet
described a flip-flop circuit called the “stochastic equality gate,” which is
equivalent to the Muller C-element. Because of Theorem 1, the Muller C-
element may be considered as a confidence amplifying device under certain
conditions. Figure 1 shows the usual graphical depiction of the equality oper-
ation and its C-element equivalent for the binary case. The figure also indi-
cates the statistical transformations that occur in the binary case. The prob-
ability mass function ρz (ζ ) is considered to be the frequency with which
z (t) = ζ . In the binary case, this function can be represented by a single
statistic, pz = ρz (1), which is equal to the time-average z.

It is easily shown that the C-element’s output statistics are equal to those
computed by the sum-product equality operation. This result relies on the
statistical independence of x (t), y (t) and z (t). This differs from the standard
sum-product algorithm, which requires independence only between X and Y.
To explain this difference, suppose that the C-element has a delay of τ . Then,
in the binary case, the output probability for z (t) can be expressed as

pz (t + τ ) = px (t) py (t) + [
1 − px (t) py (t)

]
pz (t) . (7)

The right-most term of (7) includes a product of pz with
[
1 − px (t) py (t)

]
,

representing the case where x (t) �= y (t) and z (t) retains a logic 1 state. This
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FIGURE 1
The equality operation and its stochastic implementation using a Muller C-element.
X and Y are independent binary random variables. The probabilities px , py , pz indicate the
frequency with which the associated signals x (t), y (t) and z (t) are equal to 1. The overline
mark, as in z, indicates the average signal level taken over all time. For Bernoulli-distributed
variables, x = px .

product is only valid if pz (t) is independent of the other variables at time t .
Note that pz (t) can depend on values of x and y prior to time t , but it must
be instantaneously independent of their values at the precise time t . Then,
assuming that pz (t + τ ) = pz (t), we may solve for pz to obtain the result
shown in Figure 1. The same analysis may also be repeated for the general
non-binary case, yielding results identical to (1) and (2).

Restorative Feedback topology
The idea of restorative feedback is to connect the C-element’s output back
around to one of its inputs, forming a positive feedback loop. If this is done
in a way that satisfies the independence conditions, then we would expect the
confidence (L y) to increase without bound. Unfortunately the independence
condition is violated by direct feedback in a C-element, as shown in Figure
2. When direct feedback is used, the C-element’s output state cannot ever
change unless an upset error occurs in the C-element’s state memory, and is
therefore a useless configuration.

As an alternative, the C-element feedback may be distributed across sev-
eral gates, as shown in Figure 3. This approach increases the cycle girth of
the feedback path, which weakens the statistical dependence between each
C-element’s output and the feedback signal. As shown in the next subsection,
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FIGURE 2
The equality operation is connected in a positive feedback configuration, driving L y toward ∞.
This process fails when used with the C-element realization, because the C-element inputs are
required to be independent.

the three C-elements can be initialized in a reliable state. Then the feedback
signal can be activated, driving the outputs’ confidence toward infinity. In
practice, the confidence reaches a limit set by the intrinsic error rate of the
C-element’s state memory. Hence the C-element can be used to restore the
inputs’ error probability down to that of the C-element itself.

x1 (t) �� �������	C •�
��
		

�� y1 (t)

x2 (t) �� �������	C •�
��
		

�� y2 (t)

x3 (t) �� �������	C •���

�� 
�
		

�� y3 (t)

FIGURE 3
The Restorative Feedback (RFB) topology distributes feedback across three C-elements, so that
strong statistical correlations are avoided.
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2.2 Two-phase operation.
To successfully implement the restorative feedback concept, the state of the
C-element must be initialized to an appropriate value. Since the C-element is
a latch, it must somehow be assigned an initial condition before the feed-
back transformation can be considered meaningful. To resolve this prob-
lem, the circuit is operated in two phases, called setup and restoration, as
shown in Figure 4. To initialize the C-element states, the inputs x1, x2, x3 are

x1 �� C •�
��
		

�� y1 := x3

x2�
� �� C •�
��
		

�� y2 := x1

x3 �� C •� ���

�� 
�
�		

�� y3 := x2�

(a)

x1 �� �������	C •�
��
		

�� y1

x2�
� �� C •�
��
		

�� y2

x3 �� �������	C •���

�� 
�
		

�� y3

(b)

FIGURE 4
Two-phase error correction in the restorative feedback circuit. The dotted circles indicate C-
elements which are inactive (i.e. they are not actively driving their outputs). The star indicates
an error location. (a) In the setup phase, the outputs are initialized with barrel-shifted copies of
the input signal values. (b) In the restoration phase, the feedback is activated, causing C-elements
to activate. Errors are corrected as the C-elements become active. In the final, stable state, correct
values are reinforced by the C-elements, and any further transient errors are suppressed.
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barrel-shifted onto the outputs, so that y1 = x3, y2 = x1 and y3 = x2. After
the states are initialized, the feedback paths are activated.

Like TMR, the two-phase design is able to correct a single initial error
among the xi . To show this, suppose that x2 is in error while x1 and x3 are
correct (the error position is indicated by a star (�) in Figure 4(a)-(b)). Then
during the initialization phase, the error is transferred to y3, while y1 and y2

are correct. During the restoration phase, the C-element feedback is activated.
The third C-element has inputs x3 and y2, both of which are correct. Since
these inputs equal each other, the C-element forces y3 to change, hence cor-
recting the error. The corrected signal y3 propagates to the first C-element,
where it reinforces the correct value on y1.

Unlike traditional TMR, the restorative feedback method suppresses addi-
tional transient errors that occur during the restoration phase. Suppose that a
momentary error appears on signal x1 during the restoration phase in Fig-
ure 4(b). Because y3 is already correct, the C-element has mixed inputs
(x1 �= y3), and consequently the output y1 does not change. Similarly, any
single momentary error on x2 or x3 is prevented from propagating to the out-
puts. Furthermore, simultaneous double or triple errors are blocked during
the restoration phase.

2.3 Simulation results using an iterative model.
In order to quantify the error-correcting capabilities of restorative feedback,
as compared to TMR, the bit error rate (BER) is measured using Monte
Carlo simulations. A discrete-time model is used to represent signal and
error events in the respective circuits. The C-elements and majority gates are
assumed to have a delay of one time unit. In these simulations, three types of
errors are accounted for:

1. Transient errors on the input signals. Each of the redundant inputs is
assumed to be of the form xi (t) = x∗ ⊕ exi (t), where x∗ is the correct
logic value, exi (t) is a Bernoulli distributed error event that occurs with
probability η, ⊕ indicates addition modulo 2, and t ∈ N0.

2. Momentary internal faults. Errors may also originate from within the
TMR and RFB circuits. These intrinsic gate errors are represented by
Bernoulli distributed error events eyi which occur with probability ε. We
assume that ε < η because η represents the composite error rate com-
pounded over many logic gates. Then the circuits’ actual signal outputs
are y′

i = yi ⊕ eyi (t).
3. Persistent state upsets. In the restorative feedback circuit, an additional

error type may appear if a persistent state-inversion occurs within the
C-element. In this simulation, state upset errors are included and are
assumed to occur with probability δ = ε/10.
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FIGURE 5
Simulated BER results obtained using a discrete-time model. Input transient errors appear at
a fixed rate of η = 0.05 errors per time unit. The intrinsic gate error rate (ε) is varied from
5 × 10−5 to 0.05. The circuits’ outputs are sampled and errors counted after 5 time units. The
restorative feedback BER is found to approach ε, which is lower than the TMR limit.

The simulation results are shown in Figure 5. In this figure, the input error
rate η is held constant while the intrinsic error rate ε is varied. As the intrin-
sic error rate is reduced, the TMR method approaches a limit approximately
equal to the rate of double and triple error events, 3η2 − 2η3 + ε. The restora-
tive feedback circuit approaches a limit approximately equal to ε. Because
the restorative feedback circuit relies on feedback, its error statistics improve
over time. In Figure 5, the circuit is allowed to settle for five time units. For
each additional time-unit, the circuit’s BER moves closer to the ε limit.

In real circuit implementations, the settling time may differ depending on
how the feedback is implemented. In the remainder of this paper, we consider
two example designs. The first design is a binary CMOS implementation in
which the feedback propagates in continuous time, resulting in non-iterative
dynamics. The second design is a multiple-valued implementation based on
semi-floating gate (SFG) circuits. In the SFG implementation, the feedback
signal is expressly clocked, resulting in iterative dynamics that more closely
match the discrete-time simulation model.

3 BINARY CMOS IMPLEMENTATION

The Muller C-element has been used for many years in CMOS logic design,
particularly in the field of asynchronous circuits. A typical C-element circuit
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FIGURE 6
Composition of the C-element in terms of “C-not” and “S” gates.

implementation is shown in Figure 6 [14]. This circuit consists of two parts,
which we will call the C-not and S gates. The C-not gate becomes active
whenever its two inputs are equal. Once activated, the C-not gate drives a
new value onto node Q, and overrides the state of the memory element S.
When x �= y, the C-not gate enters a high-impedance state at Q. In this case,
the value at Q is retained by weak feedback in S. The weak feedback signal
is indicated by the small inverter (also known as a “keeper”) in Figure 6. The
weak inverter is sized to ensure that the C-not gate always dominates when
there is signal contention.

3.1 RFB circuit description.
C-element components are used to construct the RFB circuit shown in Figure
7. In this circuit, a multiplexer is inserted between the C-not and S gates.
The multiplexer is assumed to be comprised of ideal electrical switches, so
that the selected input signal is shorted to the multiplexer’s output terminal.
Hence, if the C-not gate’s output is high-impedance (Q = Z ), then when
φ = 1 the multiplexer’s output is also high-impedance.

The RFB circuit operates in two phases. During the initialization phase,
the multiplexer selects the adjacent input signal, so that the state of S is
directly forced into the desired initial value. During the restoration phase,
the multiplexer selects the output from the C-not gate, hence activating the
feedback.
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FIGURE 7
Implementation of the restorative feedback method using binary CMOS gates.

3.2 Simulation results.
The CMOS restorative feedback circuit was designed for a 32nm CMOS
logic process with a supply voltage of 1V. For comparison, a cascaded-TMR
circuit was also designed. Both circuits were simulated in Spectre using Pre-
dictive Technology SPICE models [29]. Because signal errors are very rare in
CMOS technology, the “noisescale” parameter was set to a large value
(100 to 200) in order to induce a high frequency of observable errors. During
a transient simulation, all noise sources are multiplied by the noisescale
parameter, resulting in highly exaggerated noise conditions.

Figure 8 shows an overlay of 100 Monte Carlo transient simulation runs
from both the RFB and TMR simulations. An error is said to occur whenever
a signal crosses the 0.5V threshold. In the TMR case, errors appear quite
frequently, as indicated by numerous threshold-crossings in Figure 8. In the
RFB case, the rate of errors is significantly reduced after a delay of 0.5ns.
The amplitude of output noise fluctuations is also significantly reduced in the
restorative feedback outputs. The 0.5ns delay is attributed to the propagation
delay along the feedback path.

BER results were extracted from the transient simulations by counting
all error events that occur after the 0.5ns delay. With this counting method,
multiple transient errors may be counted within a clock cycle. The results are
shown in Figure 9. As expected, the restorative feedback circuit always has a
lower BER than the TMR circuit under equivalent conditions.
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FIGURE 8
Transient simulations using a 32nm noisy-CMOS model for restorative feedback and TMR. The
restorative feedback is more reliable after a delay of 0.5ns.
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FIGURE 9
Simulated BER results obtained from Spectre. The “noisescale” parameter is set very high
in order to induce enough errors to measure and compare the BER for the two methods.
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FIGURE 10
Simulated BER results obtained from a Spectre Monte Carlo simulation that includes variation
in device threshold voltages. The “noisescale” parameter is fixed at 170.

A second simulation was performed to evaluate the circuit’s sensitivity
to process variation. In this simulation, process variation is modelled as a
Gaussian-distributed offset-voltage VOS applied to the threshold voltage of
each transistor. Each transistor is assumed to have an independent offset. The
simulation was performed using Spectre’s Monte Carlo simulation capability,
and the results are shown in Figure 10.

When using the simulator in the Monte Carlo mode, it was necessary to
count errors in a slightly different way from the method used to obtain Figure
9. In the Spectre Monte Carlo simulations, a single error is counted if any
transient cross-over event occurs during a clock cycle (as opposed to counting
all such crossings as separate errors).

3.3 Discussion of results.
The BER curves in Figure 9 do not perfectly correspond to those obtained
using the discrete-time model in Figure 5. This is possibly due to the fact
that, in the device-level CMOS implementation, the input error rate (η) and
intrinsic error rate (ε) are both non-trivial functions of the noisescale
parameter, so it is not possible to hold one fixed while sweeping the other.
Hence the selection of noise parameters cannot be precisely matched with
those used in the discrete-time model.
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The differences between the discrete-time and CMOS results can be fur-
ther explained by considering continuous-time analog dynamics which are
accounted for in the Spectre simulation. The inputs xi are subject to signifi-
cant noise fluctuations, so that v (xi (t)) = v (x∗) + vex,i (t), where v (x) indi-
cates the voltage signal associated with x . The noise waveforms vex,i may
propagate to a C-element’s output only if there is a simultaneous fluctuation
in yi (t), such that vey,i has the same sign as vex,i . Furthermore the fluctu-
ations vex,i and vey,i must both be large enough to approach the inverter’s
threshold region. Such a double-fluctuation event is considerably more rare
than any single-fluctuation event. Fluctuations in yi are therefore suppressed,
which further suppresses fluctuations in yi+1, and so on.

In the TMR case, the continuous-time dynamics permit the propagation
of noise fluctuation from the xi . This is evident by considering the logic
of a majority operation: y = x1 ∗ (x2 + x3) + x2 ∗ x3. Clearly any significant
double-fluctuation among the xi will induce a fluctuation in y. For example,
suppose the correct logic value is x∗ = 0, and there is a simultaneous positive
fluctuation in x1 and x2. In this case, we expect to observe some positive fluc-
tuation in y. In the RFB circuit, however, the double-fluctuation in x1, x2 has
no consequence, unless there are corresponding fluctuations in y1, y2, which
has very low probability.

Based on this discussion, the comparative BER between RFB and TMR is
evidently sensitive to particular device models for noise and analog dynam-
ics. The results are also sensitive to how “error” is defined, which may be
application-dependent. In Figure 10, a single error is counted per clock cycle,
regardless of the number of level crossings that may occur during the cycle.
Judging from the transient simulation shown in Figure 8, the TMR method
exhibits a higher rate of level-crossings throughout a clock cycle compared
to RFB. By counting at most one error per cycle, the TMR error rate is made
to appear much lower.

The particular BER performance is dependent on particular device mod-
els, their unique noise characteristics, and application-driven definitions of
“error.” The collective results nevertheless demonstrate that the RFB method
is consistently superior in performance to TMR, with BER gains ranging
from 4× to 100×, depending on the particular models and definitions.

4 MULTIPLE-VALUED LOGIC IMPLEMENTATION USING SFG
CIRCUITS

In the restorative feedback architecture shown in Figure 7, the input and out-
put signals need not be binary. If the C-not and S gates are implemented
using a multiple-valued logic approach, then the restorative feedback circuit
provides a solution for error correction in multiple-valued logic systems. By
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definition, a C-element latches the value of its inputs whenever they are equal,
and retains its stored state whenever the inputs are not equal. This definition is
compatible with multiple-valued operation. To demonstrate a multiple-valued
implementation, we use the recharged semi-floating gate (SFG) approach, in
which dynamic logic functions are implemented via switched capacitors and
CMOS inverters [1, 6, 9]. In this paper, we use previously described SFG
designs for sample-and-hold (S/H) and comparator circuits. We also intro-
duce a new �V circuit, which is used in implementing the SFG C-element.

4.1 SFG circuit theory.
SFG circuits implement a class of dynamic multiple-valued logic. During
each clock cycle, every SFG signal returns to a reference voltage level VRef

for one half-cycle, and then acquires its proper logic value during the subse-
quent half-cycle. SFG signals therefore appear to oscillate, always returning
VRef for half of each cycle. The reference voltage is equal to the cross-over
voltage of a CMOS inverter. The operating principle of each SFG gate is
to first balance an inverter at VRef , and then “tip” the inverter up or down
(or neutral) depending on the value of input signals. Three example SFG
gates are shown in Figure 11. Each gate contains an inverter and one or more
capacitors. The SFG gates are switched using non-overlapping clock phases
φ1 and φ2. In each gate, the CMOS inverter is balanced at VRef during phase
φ2. Logic operations occur during phase φ1.

Figure 11(a) shows a S/H circuit which operates as follows. When the S/H
gate is enabled (i.e. en is asserted), the inverter is balanced at VRef during
φ2, and the capacitors are discharged to zero. During this phase, vout = VRef .
Then the inverter’s input node, vn , is charged to equal VRef . Then, during φ1,
node vn is left floating, so that both capacitors retain zero charge. The voltage
drop across both capacitors is therefore zero, resulting in vout = vin.

Figure 11(b) shows a ternary comparator circuit which is very similar to
the S/H design. As with the S/H, the inverter is balanced at VRef during
φ2, and C is charged to qC = C (vB − VRef). Then during φ1, the top-plate
of C is shifted to vA, causing the inverter’s input voltage to change, vn →
vA − vB + VRef . If vA > vB , then vn > VRef , resulting in vcmp = L (low logic
level). If vA = vB , then vn = VRef , resulting in vcmp = VRef . In the remaining
case where vA < vB , vcmp = H (high logic level).

The �V circuit, is shown in Figure 11(c), yields an output equal to the
difference of its inputs, vout = VRef + vA − vB . During phase φ2, vn = VRef

and C is charged to qC = (vB − VRef) C . During φ1, vn is left floating so that
the total capacitive charge cannot change. Hence

qC = (vA − vn) C + (vn − vdiff) C

= (vB − VRef) C

⇒ vdiff = VRef + vA − vB .



354 CHRIS WINSTEAD et al.

�
C

C

φ2 ∗ en

φ1 ∗ en

φ1 ∗ en

VRef

vin

vout
vn

(a) Sample-and-Hold circuit.

�
C

φ2

φ1

φ1

vA

vB

vcmp
vn

(b) Comparator circuit.

�
C

C

φ2

φ1

φ1

vA

vB

vdiff
vn

(c) �V circuit, vdiff = VRef + vA − vB .

FIGURE 11
Basic SFG components used to implement a multiple-valued C-element. “VRef” refers to the
value of an inverter’s cross-over voltage, which represents a middle logic level between the
traditional “low” and “high” values.

4.2 SFG C-element implementation.
The S/H, �V and Comparator components can be used to implement an SFG
C-element as shown in Figure 12. In this circuit, the �V component is used
to sense the difference between the two input voltages. The �V output is then
compared against two thresholds, VH and VL . If vdiff > VH or vdiff < VL , then
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FIGURE 12
A multiple-valued C-element circuit comprised of the SFG components in Figure 11. This circuit
substitutes for the binary C-element in the restorative feedback architecture shown in Figure 7.

the input signals are deemed unequal. Otherwise they are deemed equal, and
the S/H component is enabled to sample the input signal. In principle, this
circuit can work for arbitrarily many logic levels. In practice, the number of
levels is limited by offset errors and non-linearity in the SFG components. If
the spacing between logic levels is Vstep, then the threshold voltages should
be VH = VRef + 0.5Vstep and VL = VRef − 0.5Vstep.

4.3 Simulation Results
As a demonstration of the concept, a ternary RFB circuit was designed using
SFG circuits. The circuits were implemented using models for a 0.5μm
CMOS technology. Transient simulation results are shown in Figure 13. In
this simulation, two of the input signals (x1 and x2) always agree, while the
third signal is in error. The input signals are stepped through all signal val-
ues and error cases. In each case, the error is corrected after one clock cycle.
Valid data appears during the φ1 phase, which is indicated by the check-mark
(�). During the φ2 phase, the signals return to VRef , resulting in oscillatory
waveforms.

5 APPLICATION TO MORE COMPLEX CIRCUITS

In the preceding sections, the RFB method was shown to significantly
improve reliability when applied to isolated modules. In this section we
examine the application of RFB to a more complex circuit. It will be shown
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FIGURE 13
Simulations results for a ternary SFG implementation in a 0.5μm CMOS technology. The shaded
intervals indicate the setup phase. The input sequence includes all single-error patterns. Signals
x1 and x2 are correct, while x3 is in error. The check-marks indicate the time intervals in which
output signals are valid and correct. All errors are corrected after a one-cycle delay. The outputs
alternate between VRef (during phase φ2) and the corrected value (phase φ1).

that the RFB method can sustain reliable function across a larger system com-
posed of several RFB-protected submodules. It is difficult to perform a gen-
eral analysis of large-scale circuits due to complex dependencies among logic
signals in a design. In some cases a single error event may propagate to many
gates, leading to a large number of correlated signal faults. In other cases an
error may have no effect on the circuit’s computational result. The severity
of an error depends heavily on the circuit’s topology, on the location of the
error, and on the particular operations being performed. It is therefore desir-
able to validate an error-correction method in the context of important case
examples, such as common arithmetic circuits, allowing for random errors to
occur at any time and location within the simulation.

To demonstrate the application of RFB to a larger circuit, we use an M-
level pipelined adder circuit as shown in Figure 14. Adders are used in imple-
menting a variety of arithmetic operations, making them suitable as a demon-
stration case for RFB. The modules shown in Figure 14 include a half-adder
(HA), full-adders (FA) and delay (D) registers. The HA and FA modules per-
form modulo-M operations, and the D module provides M-level storage.

If an error occurs in one of the carry signals in the pipelined adder, then
the error will propagate down the carry path, potentially inducing a large
number of faulty signals. To protect the circuit from errors, the RFB method
is applied to all submodules, so that every object shown in Figure 14 becomes
a bundle of three identical copies. Similarly, all signal wires represent bundles
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FIGURE 14
Pipelined architecture for an M-ary ripple-carry adder. Each half-adder (HA) and full-adder (FA)
performs a sum modulo-M of its two inputs, i.e. Si = Ai + Bi mod M . An M-ary carry digit
is also produced, which is transmitted to the subsequent adder block. The carry propagation is
delayed by D registers where the RFB method may be applied to control errors in the carry path.
In the RFB implementation, every module and signal is triplicated and the RFB circuit is folded
into the D registers.

of three identical signals. The RFB circuit is embedded at the output of the D
flip-flops at each stage of the pipeline.

To simulate the transient error rate of this circuit, we assume that M-level
logic is physically encoded by a signal between 0 and 1, with arbitrary units.
The available signal values are x∗

i = i/ (M − 1), where i = 0, ..., M − 1.
Between each pair of signals xi , xi+1, there is a threshold point. The threshold
values are given by vi = (i + 1) /2 (M − 1) . At the output of any M-level
module, the actual signal value is given by x (t) = x∗ + n (t), where x∗ is
the module’s correct output value. The noise process n (t) is assumed to be
zero-mean and Gaussian distributed, so that on average x (t) = x∗ The same
noise model is also applied to the D registers, where momentary faults induce
persistent upsets.

This model was implemented using the SystemC-AMS language. The
noise process n (t) was applied at a rate of fn = 20 fc, where fc is the fre-
quency of the main simulation clock. There are consequently ten noise sam-
ples per clock phase (φ1 and φ2), meaning there are 10 opportunities for



358 CHRIS WINSTEAD et al.

momentary faults to occur during each phase. Identical simulations were per-
formed for adder circuits with RFB and without RFB. In each simulation,
errors were detected by comparing the outputs of two adders. The first adder
is the device under test, in which noise is applied at each module. The second
adder is an identical circuit in which the noise standard deviation is σ = 0,
resulting in ideal behavior. In the RFB circuit, only uncorrectable “bundle
errors” are counted when computing the Symbol Error Rate (SER). An error
is not counted if only one fault appears in a signal’s output bundle (such a
fault will be internally corrected). An error is counted whenever two or more
signals are erroneous. The the symbol error rate is given by

SER = # of bundle errors

(# of operations performed) × (# of symbols per operation)
.

The SER simulation results are shown in Figure 15. In this figure, the
SER is computed while sweeping the noise power of n (t). The noise power
is a function of the variance, and is computed by 10 log

(
2σ 2

)
. The perfor-

mance gain is measured as the difference in noise power between the RFB
and unprotected adders when operating at the same SER. From the data in
Figure 15, it is clear that the RFB method yields a gain of about 1dB in the
two-level and four-level cases. The gain is closer to 0.5dB in the eight-level
case. These results indicate that the RFB method is most beneficial when M
is small, with diminishing gains as M is increased.

6 CONCLUSIONS

The Restorative Feedback method provides a superior alternative to TMR for
a variety of design cases, particularly those where transient upsets represent
the dominant fault species. The feedback topology was shown to suppress
transient fluctuations that may occur in the correction circuit itself, and masks
transient upsets that may occur on the input signals. Furthermore the RFB
method has well-defined application to non-binary logic systems. A binary
implementation was proposed, and was shown via device-level simulations
in Spectre to achieve a significantly better error rate than TMR. A ternary
logic implementation was also presented, based on Semi-Floating Gate cir-
cuit techniques. The ternary implementation was shown to correct all input
error patterns.

The two-phase design of the RFB circuit is compatible with dynamic logic
families, including traditional dynamic CMOS logic and multiple-valued
SFG circuits. To demonstrate the application of RFB to a dynamic logic
design, a pipelined M-ary ripple carry adder circuit was simulated using a
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(a) (b)

(c)

FIGURE 15
SER results for M-ary ripple-carry adder circuits with four digits. Performance gain is measured
as the difference in noise power between protected and unprotected circuits at SER= 10−5.
Three cases are shown: (a) M = 2 (the binary case), with a performance gain of 1dB, (b) M = 4,
with a gain of 1dB, and (c) M = 8, with a gain of 0.5dB.

high-level model. The RFB method was found to provide significant perfor-
mance gain in all cases, although the benefits are reduced for larger M . Sim-
ulation results also indicated that the best error performance is obtained after
some delay, which is not required in the TMR method. There is consequently
a tradeoff between speed and error rate in the RFB method.
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NOMENCLATURE

6.1 Symbols
M The number of discrete logic levels used in an M-ary logic

circuit.
X A discrete alphabet containing M levels, or symbols. In

most cases M = {0, 1, . . . , M − 1}.
X A discrete random variable with values from X .
ρX (x, t) The probability mass function for X. May also be written

as ρX (x) if the function is time-invariant.
x (t) A stochastic process representing independent samples of

random variable X, with distribution ρX (x, t).
px The probability that x (t) = 1. This symbol is used only

when X = Z2.
x (t) A real-valued time average of x (t).
x∗ The “true” or correct value for x (t).
α A normalizing constant used in the sum-product algorithm.
lx Likelihood ratio, lx = Pr (X = x∗) / Pr (X �= x∗).
Lx Log-likelihood ratio Lx = log lx .
exi (t) Discrete error process for signal xi , so that xi (t) = x∗ +

exi (t).
vex,i (t) Analog error process for signal xi , so that v (x, i (t)) =

v (x∗) + exi (t).
N0 The set of non-negative integers.
x1, x2, x3 Input signals to a TMR or RFB circuit.
y1, y2, y3 Output signals from a TMR or RFB circuit.
η Rate of errors (errors per time unit) that occur among the xi

inputs to a TMR or RFB circuit.
ε Rate of momentary errors (errors per time unit) that occur

at the output of an individual gate (C-element or Majority)
in a TMR or RFB circuit.

δ Rate of persistent errors (errors per time unit) that occur due
to upsets in a C-element’s state memory.

φ1, φ2 Non-overlapping clock phases (i.e. there is no time when
both φ1 and φ2 are active).

VRef Cross-over voltage, where vout = vin, for a standard CMOS
inverter used in an SFG logic circuit.

vcmp Output from a ternary SFG comparator circuit, vcmp ∈
{0, VRef, vDD}.
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�V Name of an SFG circuit which computes the difference
between two voltages vA and vB .

vdiff Output from the �V circuit, vdiff = VRef + vA − vB .
en An “enable” signal which is true when high.
noisescale Parameter that specifies the noise multiplier for analog sim-

ulation in Spectre.
n (t) Gaussian noise process applied to the output of multi-level

gates for simulating ripple-carry adders.
σ Standard deviation of n (t). The noise power is

10 log
(
2σ 2

)
.

6.2 Abbreviations
TMR Triple-Modular Redundancy method.
RFB Restorative Feedback Method.
BER Bit Error Rate (errors per clock cycle per bit).
SER Bit Error Rate (errors per clock cycle per M-ary symbol).
SFG Semi-Floating Gate logic.
CMOS Complementary Metal Oxide Semiconductor transistors.
S/H Sample-and-Hold circuit.
HA Half-adder.
FA Full-adder.
D Delay register.

REFERENCES

[1] Y. Berg, S. Aunet, O. Minnotahari, and M. Hovin. (May 2003). Novel recharge semi-
floating-gate cmos logic for multiple-valued systems. In Circuits and Systems, 2003. ISCAS
’03. Proceedings of the 2003 International Symposium on, volume 5, pages V–193–V–196
vol. 5.

[2] G.D. Forney. (February 2001). Codes on graphs: normal realizations. IEEE Trans. on
Infrom. Theory, pages 520–548.

[3] V.C. Gaudet and A Rapley. (2003). Iterative decoding using stochastic computation. Elec-
tronics Letters, 39(3):299–301.

[4] Wonjin Jang and A.J. Martin. (March 2005). SEU-tolerant QDI circuits. Asynchronous Cir-
cuits and Systems, 2005. ASYNC 2005. Proceedings. 11th IEEE International Symposium
on, pages 156–165.

[5] Wonjin Jang and Alain J. Martin. (April 2005). Soft-error robustness in QDI circuits. In
Proc. 1st Workshop on System Effects of Logic Soft Errors.

[6] R. Jensen, Y. Berg, and J.G. Lomsdalen. (2005). Semi floating-gate s/h circuits. In
NORCHIP Conference, 2005. 23rd, pages 176–179.

[7] F. Lima Kastensmidt, L. Sterpone, L. Carro, and M. Sonza Reorda. (2005). On the optimal
design of triple modular redundancy logic for sram-based fpgas. In Proceedings of the



362 CHRIS WINSTEAD et al.

conference on Design, Automation and Test in Europe - Volume 2, DATE ’05, pages 1290–
1295, Washington, DC, USA. IEEE Computer Society.

[8] R. E. Lyons and W. Vanderkulk. (1962). The use of triple-modular redundancy to improve
computer reliability. IBM Journal of Research and Development, 6(2):200–209.

[9] O. Mirmotahari and Y. Berg. (May 2004). A novel d-latch in multiple-valued semi-floating-
gate recharged logic. In Multiple-Valued Logic, 2004. Proceedings. 34th International
Symposium on, pages 210–213.

[10] S. Mitra and E.J. McCluskey. (2000). Word-voter: a new voter design for triple modular
redundant systems. In VLSI Test Symposium, 2000. Proceedings. 18th IEEE, pages 465–
470.

[11] D.E. Muller and W.S. Bertky. (1959). A theory of asynchronous circuits. In Proc. Interna-
tional Symposium on the Theory of Switching, Part 1, pages 204–243.

[12] S.R. Nanduri, A.K. El Hakeem, and A.J. Al-Khalili. (mar 1990). Fault analysis of a tmr
system using multiple valued logic. In Computers and Communications, 1990. Conference
Proceedings., Ninth Annual International Phoenix Conference on, pages 23–29.

[13] K. Nikolic, A. Sadek, and M. Forshaw. (June 2002). Fault-tolerant techniques for
nanocomputers. Nanotechnology, 13(3):357–362.

[14] M. Shams, J.C. Ebergen, and M.I. Elmasry. (Aug 1996). A comparison of CMOS imple-
mentations of an asynchronous circuits primitive: the C-element. Low Power Electronics
and Design, 1996., International Symposium on, pages 93–96.

[15] S. Sharifi Tehrani, W.J. Gross, and S. Mannor. (Oct. 2006). Stochastic decoding of LDPC
codes. IEEE Communications Letters, 10(10):716–718.

[16] S. Sharifi Tehrani, W.J. Gross, and S. Mannor. (Oct. 2006). Stochastic decoding of ldpc
codes. Communications Letters, IEEE, 10(10):716–718.

[17] S. Sharifi Tehrani, C. Jego, Bo Zhu, and W.J. Gross. (Nov. 2008). Stochastic decoding
of linear block codes with high-density parity-check matrices. Signal Processing, IEEE
Transactions on, 56(11):5733–5739.

[18] S. Sharifi Tehrani, S. Mannor, and W.J. Gross. (Nov. 2008). Fully parallel stochastic ldpc
decoders. Signal Processing, IEEE Transactions on, 56(11):5692–5703.

[19] S.S. Tehrani, C. Winstead, W.J. Gross, S. Mannor, S.L. Howard, and V.C. Gaudet. (2010).
Relaxation dynamics in stochastic iterative decoders. Signal Processing, IEEE Transac-
tions on, 58(11):5955–5961.

[20] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault, and S. Pravossoudovitch. (2009). Is
triple modular redundancy suitable for yield improvement? Computers Digital Techniques,
IET, 3(6):581–592.

[21] J. von Neumann. (1955). Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In C. E. Shannon, editor, Automata Studies, pages 43–98. Princeton
University Press, Princeton, NJ.

[22] J.F. Wakerly. (1976). Microcomputer reliability improvement using triple-modular redun-
dancy. Proceedings of the IEEE, 64(6):889–895.

[23] C. Winstead. (10 2009). C-element multiplexing for fault-tolerant logic circuits. Electron-
ics Letters, 45(19):969–970.

[24] C. Winstead, V.C. Gaudet, A. Rapley, and C. Schlegel. (2005). Stochastic iterative
decoders. In Information Theory, 2005. ISIT 2005. Proceedings. International Symposium
on, pages 1116–1120.

[25] C. Winstead and S. Howard. (2009). A probabilistic ldpc-coded fault compensation tech-
nique for reliable nanoscale computing. Circuits and Systems II: Express Briefs, IEEE
Transactions on, 56(6):484–488.



RESTORATIVE FEEDBACK 363

[26] C. Winstead, Yi Luo, E. Monzon, and A. Tejeda. (may 2011). An error correction method
for binary and multiple-valued logic. In Multiple-Valued Logic (ISMVL), 2011 41st IEEE
International Symposium on, pages 105–110.

[27] Chris Winstead. (2005). Error-control decoders and probabilistic computation. In Tohoku
Univ. 3rd SOIM-COE Conference.

[28] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S. Kim, N. R. Shanbhag,
and S. J. Patel. (2006). Sequential element design with built-in soft error resilience. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 14(12):1368–1378.

[29] Wei Zhao and Yu Cao. (nov. 2006). New generation of predictive technology model
for sub-45 nm early design exploration. Electron Devices, IEEE Transactions on,
53(11):2816–2823.


