
J. of Mult.-Valued Logic & Soft Computing, Vol. 25, pp. 643–671 ©2015 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

A Variable-Length Chromosome Evolutionary
Algorithm for Reversible Circuit Synthesis

XIAOXIAO WANG1,2,∗, LICHENG JIAO1, YANGYANG LI1, YUTAO QI1

AND JIANSHE WU1

1Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,
School of Electronic Engineering, Xidian University, China

E-mail: lchjiao@xidian.edu.cn; yyli@xidian.edu.cn; qi yutao@163.com; jshwu@xidian.edu.cn
2School of Computer Science, Xi’an Shiyou University, China

Accepted: August 30, 2015.

A variable-length chromosome evolutionary algorithm for reversible
circuit synthesis (VLEA RC) is presented to improve the quality of
solutions in terms of quantum cost. The synthesis problem is formulated
as a minimization problem with an equality constraint. To begin with, a
modified stochastic ranking method for constraint handling is devised.
This gives a better balance between decreasing the constraint violation
and increasing the objective value through the use of parsimony pres-
sure. Then, a periodic population update mechanism is applied when the
evolution process stagnates. This mechanism employs heuristic infor-
mation extracted from the positive polarity Reed-Muller expansion of
the reversible specification. This can improve the feasible ratio and
reduce the search space effectively. Our design is tested on several
widely used benchmarks with circuit size varying from 4 to 30 inputs.
The results show that the proposed method can find high quality solu-
tions for the tested benchmarks as well as improve the circuit size that
can be handled compared to previous evolutionary methods.

Keywords: Reversible circuit synthesis; variable-length chromosome; evolution-
ary algorithm; chromosome bloat; equality constraint;

1 INTRODUCTION

Nowadays, the field of reversible computing has received considerable atten-
tion in various research areas including low-power CMOS design, optical
computing, and quantum computing [1].

∗ Corresponding author: E-mail: xxwang@xsyu.edu.cn

643

644 XIAOXIAO WANG et al.

Given a reversible specification, i.e. a permutation, reversible circuit (RC)
synthesis is a process of finding a composition of reversible gates from a uni-
versal reversible gate set which minimizes cost while satisfies the reversible
specification. Gate count (GC) or quantum cost (QC) is usually used as the
cost metric to estimate the quality of a reversible circuit.

Existing RC synthesis algorithms are categorized into three classes: deter-
ministic algorithms, heuristic algorithms and evolutionary algorithms.

Most deterministic algorithms can obtain feasible circuits efficiently, but
these circuits often need to be optimized further. Transformation methods
change the truth table [2] or Reed-Muller spectra [3] of a reversible func-
tion into that of identity function,and then optimize the circuit using tem-
plate matching [4]. Binary Decision Diagram (BDD) based methods [5, 6]
represent Boolean functions by BDDs, and then substitute each node with
a cascade of reversible gates. Cycle-based algorithms [7, 8] decompose the
permutation of a reversible function into a product of disjoint cycles, and
then realize each cycle with a sequence of reversible gates. These algorithms
can solve large scale problems rapidly, with template matching being used
to further optimize the synthesis results . Other deterministic algorithms con-
duct exhaustive search to find the optimal solution. Some researches focus
on minimizing gate count. Shende et al. [9] found optimal circuits for all
3-bit functions. Golubitsky et al. [10] have developed a tool capable of find-
ing a CNP (CNOT, NOT, Peres) circuit with the minimal GC for any 4-bit
permutation. D. Groeße et al. [11, 12] formulated the synthesis problem as a
sequence of SAT problems and found optimal gate count reversible circuits
for functions less than 5 bits. Other efforts have been made recently to reduce
the QC. Szyprowski et al. [13] employed the exhaustive method from [10]
to find a local minimal-QC circuit for a range of GCs. However this method
does not guarantee the exact minimum as it is time consuming to consider all
different gate counts. Due to the super-exponential increase in time and mem-
ory requirements, exhaustive searches are impeded by hardware limitations
when the problem size is more than 5 bits.

The classical heuristic algorithm, Reed-Muller Reversible Logic Synthe-
sizer (RMRLS) [14], uses Reed-Muller expansions of reversible functions
to construct priority-based search trees, and rapidly prunes the search space
by using heuristic information. The greedy nature of the RMRLS heuristic
affects the quality of its solutions.

Various evolutionary algorithms are already used in quantum circuit syn-
thesis, such as GP [15, 16], GA [17–20], EP [21], HQEA [22], and in
reversible circuit synthesis [23–25] due to their capability for global search.
However, only small scale problems with less than 7 inputs have been tested
in these algorithms, synthesizing circuits of at most 25 gates.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 645

The quality of the results from previous applications of EAs to the RC
synthesis has been limited, possibly due to the following difficulties. First
and foremost, chromosome bloat, the uncontrolled growth of the average
size of individuals, must be avoided in variable-length chromosome evo-
lutionary algorithm (VLEA). Moreover, the population is full of infeasible
solutions because the construction of feasible solutions is difficult and no
effective mechanism to directly repair infeasible individuals has been pro-
posed. Finally, the search is prone to falling into stagnation or premature
convergence due to the highly epistatic nature of RC synthesis. That is, the
contribution of a gene to the fitness of an individual is highly depending on
the genes in the front always makes evolution converge to a partial solution.
In order to advance the development of EAs in the field of reversible synthe-
sis, we must address the above problems.

This paper proposes a novel variable-length chromosome evolutionary
algorithm for RC synthesis (VLEA RC). It is restricted to QC-minimization
using Generalized Toffoli gates (GT) without adding an ancilla line. The
algorithm starts with short chromosomes, and then tailors an existing variable
length crossover operator [26] to automatically grow the chromosomes in a
slow and controlled rate. As the algorithm sets a size limit for chromosomes
to avoid bloat, this controlled rate of growth allows more generations with
which to explore the global search space. Besides these techniques usually
adopted by general VLEAs, our algorithm mainly employs two mechanisms
to address the aforementioned difficulties. Firstly, a new constraint handling
method, modified stochastic ranking (MSR), is proposed, which is based on
stochastic ranking (SR) [27]. Unlike SR which randomly ranks two infeasible
individuals according to objective value or constraint violation through a pre-
defined probability, MSR ranks infeasible individuals according to their dom-
ination relationship in terms of constraint violation (CV) and objective value.
CV herein is the error of a circuit, and objective value means the quantum
cost of a circuit. When two infeasible ones do not dominate each other, MSR
balances between the two contradictory aspects: decreasing CV versus mini-
mizing QC. It computes a ratio of the difference between objective values to
the difference between CVs. MSR makes rank according to the value of the
ratio and a predefined probability. In addition, a new population update mech-
anism similar to a hyper mutation is applied when evolution stagnates. The
selected individuals are updated by appending several gates extracted from
the positive polarity Reed-Muller (PPRM) expansion. The extraction method
is same as that of RMRLS [14], but the appending and optimization mecha-
nism is different. RMRLS uses a greedy method to score each extracted gates
and append the best one, while our method appends randomly selected gates
from the extracted ones and optimize through evolution. The mechanism can

646 XIAOXIAO WANG et al.

FIGURE 1
(a) NOT (b) CNOT (C) TOFFOLI

extract the evolution from stagnation, increase the feasible ratio and improve
the convergence speed.

VLEA RC improves the problem scale that EAs could possibly handle.
The quality of its solutions are comparable to the best known ones obtained
from EAs and other methods as of 2013.

The rest of this paper is organized as follows: Section II introduces some
basic concepts. Section III gives related works and motivation. Section IV
describes VLEA RC and its mechanics. Section V shows the experimental
results. Finally, Section VI concludes this paper and outlines the possible
directions for future research.

2 FUNDAMENTALS OF REVERSIBLE LOGIC CIRCUITS

Here we introduce the fundamentals of reversible circuit synthesis.

2.1 Reversible Functions and Reversible Gates

Definition 2.1. A function f : Bn → Bn with n inputs and n outputs is
reversible, if and only if it is a one-to-one mapping between a set of Bn input
vectors and a set of Bn output vectors.

Definition 2.2. Let X = {x1, x2, ., xn} be the set of domain variables. Gen-
eralized Toffoli gate (GT), also called multiple-control Toffoli, has the form
T(C, t), where C is the set of control lines with C ⊂ X and t is the target
line with t ∈ X but t /∈ C. The value of the target line is inverted if all con-
trol lines are assigned to 1. For |C | = 0 and |C | = 1, the gates are NOT and
CNOT respectively. For |C | = 2, the gates are called Toffoli. See Figure 1.

2.2 Positive Polarity Reed-Muller Expansion of Reversible Functions
Any Boolean function can be described using an EXOR-sum of products
(ESOP) expansion. The PPRM expansion is an ESOP expression which uses
only uncomplemented variables and can be generated from a truth table.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 647

Every output of a truth table of a reversible function can be converted into
a PPRM expression.

For example, the permutation of the 3-bit reversible function 3 17 is [7, 1,
4, 3, 0, 2, 6, 5]. Its PPRM expansion for each output are given in(1).

ao = 1 ⊕ b ⊕ ab ⊕ c ⊕ bc
bo = 1 ⊕ a ⊕ b ⊕ c
co = 1 ⊕ a ⊕ c ⊕ ac ⊕ bc

(1)

Maslov et al. [3] give an efficient technique for transforming the truth table
into its PPRM expansion.

2.3 Cost of Reversible Toffoli Networks
There are many cost metrics to measure a reversible circuit, such as QC, GC,
and Linear Nearest Neighbor Cost (LNN). In this paper, we use QC as the
measurement of a reversible circuit.

The QC of a reversible circuit rc is the sum of the QC of each reversible
gate gi constituting the circuit.

qc (rc) =
len(rc)∑

i=1

gqc (gi) (2)

Where len(rc) is the number of gates constituting rc and gqc(gi) represents
the quantum cost of a GT gate gi . It is calculated according to the mechanics
described at http://webhome.cs.uvic.ca/ dmaslov/definitions.html; see (3).

gqc (T (C, t)) =
{

1 |C | = 0
2|C |+1 − 3 |C | ≥ 1

(3)

2.4 Constraint Violation
In RC synthesis, CV is often measured by the Hamming distance [15, 19] or
the matrix trace distance [21] between the target matrix O corresponding to
the reversible specification and the matrix S representing the synthesized cir-
cuit. The computation of matrix S requires time consuming Kronecker and
standard matrix multiplication. Here we propose a new method, drawing
inspiration from RMRLS [14], to calculate the CV of the circuit rc, which
is defined in (4).

cv(rc) = diffTerm(reduced P P RM) (4)

The function diffTerm() returns the number of different terms between the
reduced P P RM and the PPRM of the identity function with the same

648 XIAOXIAO WANG et al.

size. The reduced P P RM is obtained through substituting the sequence of
reversible gates of rc successively into the PPRM of a reversible function.
For example, for function 3 17, its PPRM is shown in (1). Substituting a ⊕ 1
into each instance of a in (1), we can obtain reduced P P RM in (5).

ao = 1 ⊕ ab ⊕ c ⊕ bc

bo = a ⊕ b ⊕ c

co = a ⊕ ac ⊕ bc.

(5)

The number of different terms between (5) and the PPRM of the identity
function is 11. Therefore the CV of the circuit with only one gate NOT(a)
is 11.

3 MOTIVATION AND RELATED WORK

In this section, we introduce the involved techniques involved in and the moti-
vation for VLEA RC.

3.1 Equality Constraint Handling
Early evolutionary algorithms for quantum and reversible logic synthesis
often model the problem as a correctness maximization problem without con-
straints [15, 18]. Then, some researchers focus on minimizing a weighted
sum of the circuit cost and the error (reciprocal relation to correctness)
[17, 19, 22, 23]. In order to find correct circuits, we formulate the problem
as a minimization problem with equality constraint, that is, to ensure correct-
ness whilst minimize QC.

Existing constraint handling techniques can be grouped as: penalty func-
tions, repair algorithms, separation of objectives and constraints [27], multi-
objective based techniques [28] and hybrid methods [29]. The handling of
equality constraints has long been a difficult issue for evolutionary optimiza-
tion methods, on account of feasible space being very small compared to
the entire search space. Recently appeared algorithms for equality constraint
handling are specialized for continuous functions, such as the local search
methods for feasibility reparation [30–32] and the hybrid algorithm [33].

For RC synthesis, feasible solutions are difficult to build and no effective
mechanism to directly repair infeasible solutions has been proposed. Conse-
quently, the evolving population is full of infeasible ones and the ranking of
infeasible solutions needs to be paid more attention to. This paper employs
the separation of objectives and constraints mechanism to solve equality con-
straints, and emphasizes the comparison of undominated infeasible individu-
als.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 649

The methods belonging to this category include: Superiority of Feasible
Solutions (SF) [34], ε-constraint [35], Stochastic Ranking (SR) [27], and etc.
Giving absolute priority to CV decreasing, just as SF and ε-constraint do,
may lead solutions with large QC. We need an algorithm sufficiently con-
sidering both the CV and objective value sufficiently in the whole evolution
process. SR seems to fit that bill, but the stochastic balance between CV and
objective value may sometimes cause the degradation of evolution. Modified
SR (MSR) is based on SR and introduces multi-objective idea and parsimony
pressure into SR. It reduces the randomness by evaluating the ratio of the QC
difference to the CV difference between two nondominated infeasibles. If the
ratio is less than a predefined value ρ, that is to say, the decrease in CV only
leads to a small increase in QC, the infeasible individual with smaller CV but
larger QC ranks first. Otherwise, the ranking is based on the probability p f

defined in [27]. As described in the next section, the MSR mechanism can
also help avoid chromosome bloat.

3.2 Variable Length Evolutionary Algorithm
In RC synthesis, the length of the optimum solution is generally unknown
beforehand, so we adopt a variable-length representation. For existing
VLEAs, the primary issue to be addressed is how to avoid chromosome bloat,
i.e. allele redundancy and undue growth.

Numerous methods for controlling bloat can be found in the GP literature
[36]. We can classify the methods into two categories: explicit and implicit
methods. Explicit methods often use individual size as an explicit index to
control chromosome growth, such as depth limiting, Tarpeian, parsimony
pressure, biased multi-objective, waiting room, double tournament, propor-
tional tournament, and death by size. Implicit controls include nondestruc-
tive crossover, and recently, space structure with elitism [26, 33]. There are
also several successful variable-length chromosome GAs, such as the messy
GA, Chunking GA [37] and a progressive refinement VCL GA [38]. How-
ever, the existing VLEAs are not appropriate for the problem with unbounded
size. In addition to the above, nondestructive crossover mechanisms are also
used in VLEAs, such as SAGA [39], Virtual Virus (VIV) and SVLC [26]. In
our algorithm, we use three mechanisms to control bloat: size limit, nonde-
structive crossover and MSR.

Size Limit
We set the maximum length of chromosomes according to the complexity of
the RLC problem; see 4.2 and Table 1.

SVLC
SVLC is a nondestructive crossover operator which ensures that the aver-
age size of chromosomes will increase gradually. This affords the EA the

650 XIAOXIAO WANG et al.

FIGURE 2
Variation of average CV and average length during the first 300 generations for reversible func-
tion ham7.

opportunity to search for solutions in a more correlated landscape, i.e. all
chromosomes in nearby generations will bo of similar lengths [40].

MSR
In our algorithm, tournament selection is based on the sorting conducted by
MSR. MSR gives priority to individuals which decrease CV with only small
increase in QC. Having a large QC often means that the individual has a large
chromosome size, or that the individual consists of gates with large cost, so
MSR can also play a role in controlling bloat.

3.3 Evolution Stagnation and population update
We perform an evolutionary experiment on a randomly selected reversible
function, ham7. Figure 2 shows the variation of the average CV and average
chromosome length with time under the effect of SVLC and MSR. In this ini-
tial phase, the average CV and the average length of chromosomes will both
decrease rapidly and then level off with generations due to the high-epistasis
characteristic of the problem. After this initial phase, the average length will
grow in gradual incremental steps,with the CV decreasing slowly under the
effect of SVLC and selection bias. Figure 3 shows the increasing trend of the
average length will hit the wall at last. The inherent difficulty of equality con-
straint and the population convergence may sometimes impede the necessary
growth of the chromosomes to find the optimal solution. The slow growth
in size does not allow the optimal solution within the simulation time. We
can see in Figure 4 that feasible solutions can not be obtained through one
hundred thousand generations.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 651

FIGURE 3
Variation of average length with generations for reversible function ham7.

To detect the changed search space, extract evolution from stagnation
and increase the diversity of population, a special operation called popula-
tion update is executed iteratively every few generations. It appends a spe-
cific number of reversible gates to a selected chromosome. The appended
gates are generated randomly or chosen from the preferential gate library
of corresponding chromosome. The preferential gate library consists of gates
extracted from the PPRM expansion of the current chromosome. It is inspired

FIGURE 4
Variation of constraint violation and length of the best individual with generations for reversible
function ham7.

652 XIAOXIAO WANG et al.

by Gupta’s RMRLS algorithm [14], but different from it. RMRLS extracts
factors from PPRM, calculates their priority and then decides next gate with
greedy choice. The population update can conquer the greediness of heuristic
rules and avoid mistaken pruning by evolution process.

4 VLEA RC ON REVERSIBLE CIRCUIT SYNTHESIS

This section describes the proposed synthesis algorithm and gives the details
of MSR and population update. The basics evolved in VLEA RC are also
involved.

4.1 Overview of VLEA RC
The framework of VLEA RC is similar to that of GA except the execution
of the population update to the selected individuals whenever evolution falls
into stagnation. See Algorithm 1.

The initialization phase is described in lines 1 to 3. See Section 4.2 for
more details. The evaluation phase involves compaction, evaluation and sort-
ing, referring to lines 4-5. In line 4, each individual is compacted to guaran-
tee no occurrence of same adjacent gates, and to obtain correct QC. In line 5,
MSR sorts the individuals. The tournament selection in line 15 is conducted
based on the results. min cv and min cost are used to record the CV and
the QC of the best solution from the current generation respectively (lines
6,7 and 21). last mincv and last mincost are the previous best min cv and
min cost (lines 8-9 and lines 22-24). If they have not been improved for step
generations, we conduct a population update operation (line 13). Otherwise,
the normal evolutionary operation is conducted (lines 15-16).

4.2 Initialization Phase

Preferential Gate Library

Preferential gate library pre f Lib is constructed by extracting eligible factors
from the PPRM of a reversible specification. Eligible factors are those factors
in the PPRM expansion of each variable vi that do not contain the variable vi .
For example, we can extract four factors for variable a from (1) which are a =
a ⊕ 1, a = a ⊕ b, a = a ⊕ c and a = a ⊕ bc, namely, Not(a), CNOT(b, a),
CNOT(c, a) and T(b, c, a). The pre f er Lib for reversible function 3 17 con-
tains a total of nine gates.

Attribute Information

The following three values can reflect the complexity of a reversible function
to some extent and are used during the population initialization.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 653

Algorithm 1 VLEA RC for reversible circuit synthesis
Require:

PPRM expansion of function f (x1, x2, xn);
Population size pn , crossover probability pc, mutation probability pm ;
Population update interval step;

Ensure:
The best individual (synthesized reversible circuit) I0;

1: construct initial pre f er Lib
detect maxConNum, f actor Num and di f f T erm;

2: estimate the maximum length max Len and the initial length ini tial Len
of individuals;

3: initialize population P(t);
4: compact and evaluate individuals of P(t);
5: sort individuals using MSR;
6: min cv equals to the CV of the best individual;
7: min cost equals to the cost of the best individual;
8: last mincv = min cv;
9: last mincost = min cost ;

10: u = 0;
11: while stop criterion is not met do
12: if u == step then
13: update P(t) to P(t+1) using jumping growth;
14: else
15: selection,crossover and mutation according to pc and pm ;
16: generate P(t + 1);
17: end if
18: compact and evaluate the individuals in P(t + 1);
19: sort individuals in P(t + 1) using MSR;
20: elitism reservation;
21: update min cv and min cost ;
22: if (last mincv > min cv) or (last mincv == min cv and

last mincost > min cost) then
23: last mincv = min cv;
24: last mincos = min cost ;
25: else
26: u = u + 1;
27: end if
28: t = t + 1;
29: end while

654 XIAOXIAO WANG et al.

f actor Num represents the number of eligible factors subtracted from the
PPRM of a given function, namely, the size of pre f Lib. We set max Len, the
maximum length of chromosomes, according to f actor Num. Then, the ini-
tial length of a chromosome, ini tial Len, can be calculated according to (6).

ini tial Len =
⎧⎨
⎩

max Len/2 + rand (0, 5) max Len ≤ 30
max Len/3 + rand (0, 5) 30 < max Len ≤ 50
15 + rand (0, 5) max Len > 50

(6)

di f f T erm is the number of different terms between the PPRM of a
reversible function and the PPRM of the identity function of the same size.

maxConNum is the maximum number of control bits of the factors in
pre f Lib and can be used as the upper limit of the number of control bits of
a randomly generated gates constituting an individual.

Encoding of Reversible Circuits
An n-bit circuit consists of the GT gates from pre f Lib or ran-
domly generated. Any GT gate T(C, t) can be encoded as a two-tuple
(Cn−1Cn−2...C0, t). Cn−1Cn−2...C0 is a bit string of length n. If Ci is set to 1,
i will be a control bit of T(C, t); t , an integer between 0 and n − 1, denotes
the position of the target bit. A 3-bit circuit including NOT(0), CNOT(2,1)
and T(1,2,0) can be encoded as {(000,0),(100,1),(110,0)}.

The more the number of control bits of a gate, the lower the generating
probability of the gate.

4.3 Modified Stochastic Ranking
See Algorithm 2. If two adjacent individuals I j and I j+1 have a dominate
relationship in light of their objective values and CVs, the dominating one
will rank first (lines 4 and 5). If two individuals are non-dominated each
other (lines 6 and 12), we compute a ratio of the difference between the two
CVs to the difference between the QCs. If the result is less than a predefined
value ρ (line 7), it means that an improvement by one unit in CV is worth an
increase of QC by at most ρ unit and the individual with lower CV should
rank first (line 8); otherwise, the individual with lower CV and overlarge
cost will rank first with small probability (lines 9-10 and lines 14-15). The
parsimony pressure can be controlled by ρ. The larger the ρ is, the lower the
parsimony pressure becomes.

4.4 Population Update using Jump Growth
Whenever the best solution has not been improved for step generations, we
conduct a population update. If the individual I j selected by a tournament is

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 655

Algorithm 2 Modified Stochastic Ranking
Require:

P(t), p f , ρ;
Ensure:

Ranked population P(t)′;
I j is the j th individual;

1: for i := 1 to n do
2: for j := 1 to n do
3: sample u ∈ U (0, 1)
4: if cv(I j) ≥ cv(I j+1) and qc(I j) ≥ qc(I j+1) then
5: swap(I j , I j+1);
6: else if cv(I j) > cv(I j+1) and qc(I j) < qc(I j+1) then
7: if (qc(I j+1) − qc(I j))/(cv(I j) − cv(I j+1)) < ρ) then
8: swap(I j , I j+1);
9: else if u < p f then

10: swap(I j , I j+1);
11: end if
12: else if cv(I j) < cv(I j+1) and qc(I j) > qc(I j+1) then
13: if (qc(I j+1) − qc(I j))/(cv(I j) − cv(I j+1)) > ρ) then
14: if u > p f then
15: swap(I j , I j+1);
16: end if
17: end if
18: end if
19: end for
20: if no swap done then
21: break;
22: end if
23: end for

infeasible and its real length, real Len, is less than max Len, we update I j

by a jump growth (JG) operation; otherwise I j goes into the next generation
directly. This is repeated until the updated population is full. See Algorithm
3 for the details of jump growth.

The extending length of an individual, add Len, is determined by unit
and di f f Len (lines 4-8). unit is the default extending length. di f f Len is
the difference between max Len and real Len of an individual. The gates
appended to the tail of I j can be selected from pre f LibI j (lines 11-13) or
generated randomly (lines 15-17). pre f LibI j is generated by subtracting the
preferential gates from the reduced P P RM of I j .

656 XIAOXIAO WANG et al.

Algorithm 3 chromosome jump growth
Require:

A selected individual I j from P(t);
The default extending length unit ;

Ensure:
An extended individual I ′

j based on I j ;
1: update the preferential gate library of I j , pre f LibI j ;
2: compute the real length of I j , real Len;
3: di f f Len = max Len − real Len;
4: if di f f Len > unit then
5: add Len = unit ;
6: else
7: add Len = di f f Len;
8: end if
9: generate I ′

j by duplicating I j

10: if rand()%5 == 1 then
11: for i := real Len to real Len + add Len do
12: append a random gate from pre f LibI j to I ′

j ;
13: end for
14: else
15: for i := real Len to real Len + add Len do
16: append a randomly generated gate to I ′

j ;
17: end for
18: end if
19: compact and evaluate I ′

j ;

4.5 Recombination
If two parents have no common substrings, the standard one-point crossover
or two-point crossover with truncation is applied otherwise SVLC [26] is
applied. The children are subjected to one of several mutations. The first type
of mutation is called gate mutation inside of a gene, such as tuning control
bits or target bit; the second type of mutation is applied at the chromosome
level, including adding a gate, deleting a gate, exchanging two gates, and
replacing a gate with a random gate. One can reference [21] for more details.

5 EXPERIMENTAL STUDIES

In order to verify the effectiveness of VLEA RC, to explore the contribu-
tions of MSR and JG, and to analyze the parameter settings, benchmarks

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 657

popSize TCH pc TCH pm TCH p f maxLen TCHρ step unit

100, 300, 500 0.6 0.2 0.2 f actor Num+ related to 100 10
20, 50 maxConNum 100 10

TABLE 1
Considered parameter values for VLEA RC.

with 3 to 30 variables are tested. The details and the original sources of
these benchmarks are published at http://webhome.cs.uvic.ca/ dmaslov/ or
http://www.revlib.org, or reported at the specified references.

All experiments are carried out on a PC with Intel Core 2 Quad CPU and 2
GB memory. Table 1 lists the parameters of VLEA RC. popSize, the size of
a population, is determined by the scale and the complexity of a benchmark.
The maximum evolutionary generation maxGen and the value of ρ are given
in different experiments.

5.1 Comparison of VLEA RC with a local optimization algorithm

Task and Pre-Experimental Planning
In [41], two local optimization methods are applied in sequence to reduce
the costs of the circuits obtained from a deterministic algorithm. We test the
randomly generated 4-bit functions from [41] in order to verity the effective-
ness of VLEA RC on small scale problems, which carries out synthesis and
optimization simultaneously.

Experiments setup
We set ρ to 9, maxGen to 1500 and step to 100. Thirty runs are conducted.

Results and visualization
Table 2 lists the best results in terms of QC from both the algorithms, the
average convergence time over 30 runs and an example of the best circuits
from VLEA RC. g in (g, c) means the GC of a best solution and c the QC.
VLEA RC obtains feasible solutions in all runs, smaller QCs on 12 functions
and smaller GCs on 9 functions. APP2.2, APP2.10 and APP2.12 have higher
complexity in terms of large di f f T erm but low f actor Num, so their aver-
age convergence time is relatively high. App2.6 has the lowest complexity in
terms of di f f T erm and maxConNum, and we can obtain the solution in
about 0.36 seconds.

The preliminary results show that VLEA RC can obtain superior solutions
to the method [41] which solves the problem by two steps: synthesis and
optimization.

658 XIAOXIAO WANG et al.

Func. [41] (g, c) Our (g, c) Time [s] Example Circuit for QCmin

App2.1 (10, 30) (11, 31) 26.85 C(1,3)C(0,1)T(3,0,2)C(2,3)C(1,2)N(2)
T(3,1,0,2)T(3,2,1)C(0,3)C(0,2)N(3)

App2.2 (18, 102) (12, 40) 49.07 N(2)T(3,0,1)T(3,2,1,0)N(3)C(3,0)T(1,0,2)
C(3,1)C(3,0)T(2,1,3)T(3,0,1)C(0,3)N(0)

App2.3 (13, 43) (12, 32) 21.82 C(0,2)N(1)T(1,0,3)C(3,1)T(2,1,0)C(3,0)
T(3,0,2)C(1,3)T(3,0,1)C(3,0)T(3,1,0)C(2,1)

App2.4 (9, 36) (10, 34) 27.17 N(3)N(1)T(2,1,3)T(3,0,2)C(3,0)T4(3,2,0,1)
T(3,1,0)C(3,1)C(1,2)N(2)

App2.5 (10, 50) (9, 29) 32.56 C(1,3)C(1,0)C(3,1)T(2,0,3)T(3,1,0)T(2,0,3)
C(1,2)T(3,0,2)T(3,2,1)

App2.6 (6, 14) (4, 12) 0.36 T(2,0,1)T(1,0,2)C(2,0)C(0,1)
App2.7 (15, 59) (9, 29) 7.29 T(2,0,1)C(1,0)T(1,0,2)T(3,2,0)T(3,1,2)C(0,2)

NOT(1)T(1,0,3)N(2)
App2.8 (15, 53) (11, 43) 28.82 N(2)T(3,0,2)T(1,0,3)C(2,1)T(2,1,3)

T(3,2,1,0)T(1,0,2)C(2,1)T(3,0,2)N(1)N(0)
App2.9 (11, 47) (13, 33) 30.78 C(2,0)T(3,1,2)C(1,3)N(0)C(0,1)C(1,2)T(2,1,3)

C(2,1)C(0,1)T(3,2,0,1)C(3,2)C(0,3)N(0)
App2.10 (13, 57) (10, 38) 50.62 T(1,0,3)C(0,3)C(2,1)T(3,1,2)T(2,1,3)C(0,2)

C(3,1)T(3,2,1,0)C(3,2)T(2,1,3)
App2.11 (12, 80) (11, 31) 22.44 N(2)T(2,0,1)C(0,2)T(3,1,0)C(0,1)C(0,2)

T(2,0,3)T(3,1,0)C(2,3)T(2,0,3)N(2)
App2.12 (17, 53) (8, 32) 15.98 C(2,0)T(2,0,3)T(3,2,0,1)N(1)C(3,2)T(3,2,0)

C(1,2)T(2,0,3)
App2.13 (12, 52) (13, 45) 89.86 C(1,3)T(3,1,2)N(3)C(0,3)C(1,0)T(2,0,3)C(3,0)

T(3,1,2)C(2,0)T(2,1,0)C(0,1)T(3,0,1)T(2,1,0,3)

TABLE 2
Comparison between the best results from VLEA RC and those from [41].

5.2 Comparison of VLEA RC with a QC-minimization algorithm

Pre-Experimental Planning and Task

Golubitsky et al. [10] found the GC-minimization circuits for any 4-bit
reversible functions. For a given function f , the algorithm conducts a
breadth-first-search to find if there exist reversible circuits h and g of length k
and at most k, respectively, such that f = h ◦ g. k starts at 1 and is increasing
until the condition is satisfied.

Based on [10], Szyprowski et al. [13] found the QC-minimum circuits
under several different GCs. The above two algorithms are space-consuming
because they must maintain a circuit library which contains all of the circuits
with length from 1 to k. By far, they can not be generalized to functions with
more than 4 variables.

In order to test the solution quality of VLEA RC on small scale problems,
we compare the best results from VLEA RC through 30 runs with that from
[13]. The parameter settings are same as the previous experiment.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 659

Func. [13] (g, c, c′) Our (g, c, c′) Times [s] Example Circuit for QCmin

G1 (4, 12, 12) (6, 14, 10) (4, 12, 12) 4.86 C(2,0)T(3,1,2)CNOT(2,0)T(3,2,1)
G2 (6, 14, 14) (8, 16, 12) (6, 14, 14) 3.94 C(0,2)CNOT(1,2)T(3,2,1)T(3,1,0)C(0,2)

C(1,2)
G3 (7, 15, 15) (8, 16, 12) (7, 15, 15) 4.94 C(1,2)T(3,2,1)C(1,2)C(1,0)C(3,1)T(3,0,1)

C(1,0)
G4 (9, 21, 17) (10, 22, 16) (9, 21, 19) 12.07 C(0,1)C(3,0)T(3,1,0)C(0,1)C(2,0)T(3,0,2)

T(2,0,3)C(2,0)C(3,0)
G5 (8, 24, 20) (10, 26, 18) (7, 23, 23) 13.52 NOT(1)T(3,1,2)T(3,2,1)C(0,1)T(3,1,0)

T(2,0,3) C(2,3)
G6 (9, 25, 19) (10, 26, 18) (9, 25, 23) 11.90 N(0)C(3,1)T(3,1,2)C(0,1)T(3,1,0)C(0,1)

T(2,0,3)T(3,2,0)N(0)
G7 (7, 23, 21) (9, 26, 19) (7, 23, 23) 29.36 C(0,1)

T(3,1,0)C(3,0)CNOT(0,1)T(3,0,2)
T(3,2,0)T(2,0,3)

G8 (9, 33, 31) (11, 27, 21) (11, 27, 25) 32.49 T(3,1,2)C(0,1)T(3,1,0)C(0,1)C(3,2)C(2,3)
C(1,3)T(2,0,1)C(1,3)T(3,1,0)C(2,1)

G9 (9, 25, 21) (11, 27, 21) (9, 25, 23) 23.44 C(0,1)T(3,1,0)C(1,2)C(3,0)T(3,0,2)C(0,1)
T(3,2,0)N(0) T(2,0,3)

G10 (9, 29, 27) (12, 32, 21) (12, 28, 28) 37.50 C(3,0)C(0,1)T(3,1,0)T(2,0,3)T(3,0,2)C(2,0)
C(0,1)C(3,1)T(2,1,0)C(3,2)C(1,3)C(2,1)

G11 (10, 34, 30) (11, 27, 25) (11, 27, 25) 57.18 C(2,1)T(3,1,2)C(3,1)C(2,3)C(1,0)T(3,0,2)
T(2,1,0)T(3,0,1)C(1,0)C(3,2)C(2,0)

G12 (12, 36, 28) (12, 36, 28) (15, 35, 33) 49.16 T(3,0,2)C(2,3)C(1,0)T(3,1,2)C(2,3)C(2,1)
C(0,3)T(1,0,2)T(3,2,0)C(0,3)C(0,2)T(3,1,0)
C(1,3) C(0,2)C(2,3)

TABLE 3
Comparison between the best results from VLEA RC and those from [13].

Results and visualization

Our algorithm is based on GT library, while the approach from [13] is based
on CNTP. It treats every “T(a, b, c) T(a, b)” pair (or its inverse) or “T(a, b, c)
T(b, a) ” pair (or its inverse) in a circuit as a Peres gate and assigns the cost of
4 to it as opposed to 6, and thus obtains a smaller QC of a circuit. In Table 3,
g in triple (g, c, c′) means GC, c means QC without considering Peres gate,
c’ means QC considering Peres gate. That is to say, our algorithm is aimed
at minimizing c, while [13] is aimed at minimizing c’. Although [13] gives
the minimum c’ under a few different lengths, Table 3 only lists the best two
solutions in terms of c and c’ respectively due to space limitation and for
comparison.

Among the twelve functions, VLEA RC finds the circuits with smaller c
on functions GT5, GT10 and GT12 and the circuits with the same c compared
with those found in [13] on 9 functions on 9 functions. The feasible ratio over
thirty runs is 1 for each function. It shows that VLEA RC is competitive in
QC minimization on 4-bit reversible functions.

660 XIAOXIAO WANG et al.

Func. size factorNum diffTerm maxconNum

3 17 3 9 13 2
hwb4 4 12 32 2
hwb5 5 35 90 3
hwb6 6 102 192 4
5one013 5 29 68 4
5one245 5 51 112 4
majority5 5 27 54 4
mod5adder 6 48 76 5
mod15adder 8 15 15 4
mod32adder 10 31 31 5
mod64adder 12 63 63 6
ham7 7 22 33 3
shift10 fixed 12 50 80 3
shift15 fixed 17 75 120 3
shift28 fixed 30 140 224 3
nth prime4 inc 4 16 26 3
nth prime5 inc 5 37 65 4
nth prime6 inc 6 82 150 5
Plus63mod4096 79 12 441 441 11
Plus63mod8192 80 13 504 504 12
Plus127mod8192 78 13 889 889 12

TABLE 4
Considered benchmark functions and the attribute values.

5.3 Comparison of the best results from VLEA RC and the best
known as of late 2013

In this experiment, the benchmark functions with 3 to 30 variables are
tested to verify the performance of VLEA RC. The best known results
in terms of GC minimization and QC minimization are published at
http://www.revlib.org, which are coming from different reversible circuit syn-
thesis algorithms, such as [2], [3, 7, 8] and [14].

Pre-Experimental Planning
The names and the key attribute values of the benchmarks are given in Table
4. size is the number of variables in a reversible benchmark and represents the
scale of the problem. factorNum, diffTerm and maxConNum are introduced in
section 4.

Task
Before we go into analysis of VLEA RC, we want to verify the effectiveness
of VLEA RC on benchmarks more than 4 bits.

Results and Visualization
We can see the results in Table 5. VLEA RC reaches the best known
solution on 3 17, improves QC on the eight benchmarks with only

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 661

Func. Best GCmin Best QCmin VLEA RC

g c c’ g c c’ g c c’

3 17 6 14 12 6 14 12 6 14 12
hwb4 11 23 21 13 25 19 11 23 21
hwb5 24 104 104 38 90 80 33 77 73
hwb6 42 140 140 47 107 107 42 102 100
5one013 19 95 95 - 19 59 57
5one245 20 104 104 - 17 61 61
majority5 16 104 104 - 16 68 64
mod5adder 15 83 83 17 77 77 18 70 68
mod15adder 10 71 71 10 71 71 13 57 53
mod32adder 15 154 154 - 21 129 123
mod64adder 26 333 333 - 35 203 197
ham7 21 65 65 25 49 49 21 49 49
nth prime4 inc 11 53 53 14 34 26 14 34 26
nth prime5 inc 25 103 103 36 98 80 25 103 103
nth prime6 inc 55 667 667 55 667 667 57 549 545
Shift10 fixed 19 1198 - - - - 51 223 223
Shift15 fixed 30 3500 - - - - 93 481 481
Shift28 fixed 56 14310 - - - - 183 1027 1027
Plus63mod4096 79 429 32539 - 429 32539 - 21 6785 6781
Plus63mod8192 80 492 45025 - 492 45025 - 20 16580 16576
Plus127mod8192 78 910 73357 - 910 73357 - 19 16455 16451

TABLE 5
Comparison between the best reported results as of late 2013 and the best results from
VLEA RC.

GC-minimization solutions published and improves both QC and GC on
5one245. Among the remaining twelve problems, VLEA RC obtains smaller
c and c’ on eight problems and dominates both the GC-minimization and
QC-minimization best results on five problems. VLEA RC obtains the infe-
rior solution to the best known one on nth prime5 inc.

VLEA RC performs effectively for most test problems except for hwb
series and nth prime* inc series. The two series have large di f f T erm and
maxConNum compared with other benchmarks of the same size and have
strong interactions between their variables. The latter may lead the factors
subtracted from a PPRM lose efficacy.

Some of the examples of the obtained circuits are published in Table 6.

5.4 Comparison of VLEA RC with and without jump growth

Pre-Experimental Planning
For the sake of brevity, we use VLEA RC and VLEA RC-JG to represent
VLEA RC with and without population update respectively. Both algorithms
adopt MSR as equality constraint control mechanism.

662 XIAOXIAO WANG et al.

hwb5
C(3,1)C(0,1)T(4,2,0)T(2,1,0)N(4)C(4,3)T(3,1,0)N(4)C(4,2)N(3)T(3,2,4)T(2, 1,3)C(1,2)C(4,2)
T(2,0,1)C(4,3)T(3,1,0)C(3,1)T(2,0,3)C(4,2)T(3,1,4)T(2,0,3) C(1,2)C(4,1)T(4,1,0)C(3,0)C(2,0)
C(3,4)C(0,3)C(3,0)C(4,2)C(4,0)C(3,2)

hwb6
C(0,2)N(0)C(2,4)C(1,5)C(4,0)C(3,4)C(5,4)C(1,3)T(5,3,1)T(2,1,0)C(0,2)T(2, 0,1)N(3)C(4,1)
T(2,1,0)C(1,0)N(5)T(5,3,1)C(2,5)N(3)T(3,1,5)T(5,1,3)T(2,0, 1)T(4,2,0)T(5,1,3)C(1,2)N(1)
T(3,1,5)C(0,3)T(4,3,0)C(0,3)T(5,4,2)C(2,0)C(2,5)C(2,4)T(3,1,5)N(0)C(0,2)C(1,2)T(5,1,3)
C(5,1) C(3,1)

5one013
C(4,0)N(3)C(3,2)C(3,1)C(1,3)C(2,0)N(3)T(4,0,3)C(3,4)T4(3,2,1,4)T(4,0,1) C(4,3)C(0,4)N(0)
T(3,0,4)T(2,1,3)C(2,1) T4(4,1,0, 2)N(2)

5one245
C(2,1)C(3,2)N(1)C(1,2)C(0,3)C(2,0)C(4,0)C(3,4)T4(2,1,0,3)T5(3,2,1,0,4) C(1,4)T(1,0,2)C(4,1)
C(1,0)C(1,3)N(1)C(0,2)

majori t y5
T(4,3,0)T(4,3,1)C(4,3)T(2,0,3)C(3,0)T(3,0,1)T(3,2,0)T(3,1,2)T(2,0,3)C(4,2) T(3,2,4)C(4,3)
C(4,1)T(4,0,1)T4(3,1,0,4) T(4,2,3)

mod5adder
T(3,0,1)N(2)N(1)C(1,0)T(5,1,0,2)T(3,2,0)T(3,1,0,2)T(4,2,1)T(1,0,2)T(4,2,0) T(1,0,2)C(1,0)
T(5,2,0)N(2)N(1)T(5,0,1)

mod15adder
T(6,2,3)C(6,2)C(7,3)C(5,1)T(4,0,5)C(5,1)T4(5,2,1,3)T4(4,2,0,3)T(5,1,2)T(4, 0,5)T(4,0,2)
C(4,0)C(5,1)

mod32adder
T(8,3,4)C(8,3)C(9,4)T(5,0,1)T4(7,3,2,4)T(7,2,3)C(7,2)T(5,0,6)T5(6,3,2,1,4) T5(5,3,2,0,4)
T4(5,2,0,3)T4(6,2,1,3)T(6,1,2)T(5,0,2)T(5,0,6)C(6,1)C(5,0)

mod64adder
T(10,4,5)T(6,0,7)C(10,4)T4(9,4,3,5)T(6,0,1)T(9,3,4)C(9,3)C(11,5)T5(8,4,3,2, 5)T4(8,3,2,4)
T(8,2,3)C(8,2)T5(7,4,3,2,1,5)T6(6,4,3,2,0,5)T5(6,3,2,0,4)T5(7, 3,2,1,4)T4(7,2,1,3)T4(6,2,0,3)
T(6,0,2)T(7,1,2)T(6,0,7)C(6,0)C(7,1)

plus63mod4096 79
NOT(0)C(0,1)T(1,0,2)T4(2,1,0,3)T6(10,9,8,7,6,11)T5(9,8,7,6,10)T5(3,2,1,0, 4)T6(4,3,2,1,0,5)
T8(6,5,4,3,2,1,0,11)T5(11,9,8,7,10)T8(6,5,4,3,2,1,0,11)T5(11,9,8,7,10)T4(8,7,6,9)
T9(7,6,5,4,3,2,1,0,8)T(7,6,8)T8(6,5,4,3,2,1,0,7)C(6,7) T10(8,7,6,5,4,3,2,1,0,9)N(6)
T7(5,4,3,2,1,0,6)T12(10,9,8,7,6,5,4,3,2,1,0,11)

TABLE 6
Some examples of the circuits obtained from VLEA RC.

Task
We want to verify that VLEA RC can obtain a higher feasible ratio and a
faster convergence speed than VLEA RC-JG does, and meanwhile it does
not decrease the quality of solutions very much.

Experimental Setup
For the parameters (maxGen, popSize, pc, pm , p f and ρ) common to both
algorithms, we set the same values for all test benchmarks except ρ. ρ is

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 663

set to an intermediate value between 2maxConNum − 3 and 2maxConNum+1 − 3,
which provides a very small parsimony pressure to control chromosome bloat
and accordingly help us focus on studying the effect of JG. We use max-
Gen as the termination condition and give adequate evolutionary time for the
slow convergence of VLEA RC-JG. maxGen is set to 20000 for all prob-
lems apart from shift* inc and plus*modu*; for which, maxGen is 40000 and
3000 respectively. Thirty repeats are performed. The results are compared
according to five criteria (Gm, Fr, best, mean, and st. dev.). Gm is the mean
generations for finding the best solutions in all runs. Fr is given as the ratio
of the number of runs during which feasible solutions are obtained to the total
number of runs. best, mean and st. dev. are computed based on the objective
values of the feasible solutions found out of the 30 runs.

Results and Discussion
The results are listed in Table 7. Only sixteen representative reversible bench-
marks are considered.

VLEA RC-JG does not find feasible solutions in all runs on 12 problems
(hwb6, mod32adder, mod64adder, ham7, nth prime5 inc, nth prime6 inc,
shift* fixed and plus*mod*). Among which, VLEA RC finds feasible solu-
tions in all runs on 5 problems (mod32adder, mod64adder, plus*mod*),
in more than half of the runs on 2 problems (ham7 and nth prime5 inc)
and in less than 10 runs on 3 problems (nth prime6 inc, shift15 fixed and
shift28 fixed). For the remaining 4 problems, VLEA RC not only obtains fea-
sible solutions in all runs, but also converged faster than VLEA RC-JG.

VLEA RC improves the convergence speed and obtains more feasible
solutions on all test problems. It outperforms VLEA RC-JG on mod5adder,
mod15adder in terms of best and mean and is only inferior to VLEA RC-JG
on 5one245 in terms of best and mean.

5.5 Comparison between VLEA RC with SR and VLEA RC
with MSR

Task
The aim is to compare VLEA RC with different constraint solving methods:
SR and MSR. The hypothesis is tested: VLEA RC with MSR can perform
better than VLEA RC with SR in terms of best and mean.

Experimental Setup
All parameter settings in addition to ρ are same as those in the previous exper-
iment. The value of ρ varies with each benchmark. The results are compared
according to the five criteria (Gm , Fr , best , mean, and st. dev.). The effect
of different value of ρ on VLEA RC with MSR is studied in the next experi-
ment.

664 XIAOXIAO WANG et al.

G
m

F
r

be
st

m
ea

n
st

.d
ev

.

B
en

ch
m

ar
k

N
o

JG
JG

N
o

JG
JG

N
o

JG
JG

N
o

JG
JG

N
o

JG
JG

hw
b6

-
28

34
0.

00
00

0.
33

33
-

16
1

-
24

0.
40

00
-

90
.4

69
9

5o
ne

24
5

16
46

83
6

0.
60

00
1.

00
00

63
64

65
.3

33
3

69
.0

66
7

4.
13

12
4.

91
26

m
aj

or
ity

5
18

21
87

5
0.

43
33

1.
00

00
10

4
84

12
7.

00
00

12
5.

50
00

12
.7

47
5

21
.1

66
7

m
od

5a
dd

er
68

03
36

9
0.

46
67

1.
00

00
83

83
10

2.
42

86
99

.1
66

7
20

.4
62

8
18

.6
45

7
m

od
15

ad
de

r
44

6
21

3
0.

10
00

1.
00

00
74

58
74

.0
00

0
73

.8
66

7
0.

00
00

3.
21

35
m

od
32

ad
de

r
-

46
1

0.
00

00
1.

00
00

-
13

4
-

18
1.

90
00

-
23

.5
86

0
m

od
64

ad
de

r
-

81
5

0.
00

00
1.

00
00

-
32

2
-

44
0.

43
33

-
52

.6
87

6
ha

m
7

-
73

8
0.

00
00

0.
93

33
-

55
-

71
.4

64
3

-
6.

18
53

nt
h

pr
im

e5
in

c
-

19
73

0.
00

00
0.

83
33

-
16

0
-

21
0.

24
00

-
28

.5
54

5
nt

h
pr

im
e6

in
c

-
48

04
0.

00
00

0.
23

33
-

78
9

-
82

3.
85

71
-

29
.1

17
1

Sh
if

t1
0

fix
ed

-
85

40
0.

00
00

0.
46

67
-

27
3

-
31

7.
85

71
-

24
.6

85
2

Sh
if

t1
5

fix
ed

-
20

86
8

0.
00

00
0.

23
33

-
51

7
-

55
7

-
27

.6
67

7
Sh

if
t2

8
fix

ed
-

33
00

5
0.

00
00

0.
10

00
-

11
01

-
11

27
.3

33
3

-
28

.7
46

0
Pl

us
63

m
od

40
96

79
-

68
8

0.
00

00
1.

00
00

-
82

66
-

82
77

.6
00

0
-

14
.0

70
3

Pl
us

63
m

od
81

92
80

-
53

6
0.

00
00

1.
00

00
-

16
58

0
-

16
92

5.
00

00
-

55
4.

67
98

Pl
us

12
7m

od
81

92
78

-
14

65
0.

00
00

1.
00

00
-

16
45

5
-

16
99

1.
00

00
-

10
09

.3
00

0

TA
B

L
E

7
C

om
pa

ri
so

n
be

tw
ee

n
V

L
E

A
R

C
w

ith
an

d
w

ith
ou

tj
um

p
gr

ow
th

.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 665

Results and Discussion
VLEA RC with MSR achieves better Fr , best and mean on all benchmarks
except for nth prime5 inc and shi f t28 f i xed, and acquires better st.dev.

on 11 problems, as listed in Table 8. However, VLEA RC with MSR needs a
longer average convergence time on 15 problems.

MSR can efficiently balance the decreasing of CV and the increasing of
objective value. It prefers the decreasing of CV by a slight cost increasing, so
we can obtain better solutions through the slow detailed search.

5.6 The Impact of ρ on MSR

Task
The main objective is to observe the influence of ρ value on the algorithm
performance and to determine how to set a proper value for ρ.

Experimental Setup
Testing all benchmarks under all possible ρ is time consuming and of slight
significance, so we test one randomly selected function, 5one013, with ρ

increasing from 5 to 30 to get an intuitive understanding of the impact of ρ

on Fr , mean and best . In theory, ρ can be set to any integer greater than zero.
While, for a specific function, such as 5one013, the maxConNum is 4 and
the cost of the gate used to build the circuit may be 1, 5, 13 and 29 according
to (3). For the value of ρ less than 5 or larger than 30, the parsimony pressure
of MSR is too high or too low, so we set ρ between 5 and 30. Thirty runs
were performed for each value of ρ.

Results and Observations
Figure 5 shows the variation of feasible ratio with ρ changing from 5 to 30
for 5one013. Fr rises with the increasing of ρ and reaches 1 when ρ is equal
to and larger than 10. Figure 6 shows the variation of mean with different ρ.
mean declines with ρ changing from 5 to 8 and rises on the whole along with
local oscillation when ρ changing from 9 to 15, then keeps tiny increasing
trend with turbulence when ρ is larger than 15. Whether for a too small (close
to 5) or a too large (larger than 15) ρ, mean is comparatively large. The
difference is that the feasible ratio for the former is much less than that for
the latter. This can be interpreted through the fact that the bloat control effect
by MSR is too strong when ρ is over small, thus the decreasing of CV is only
possible through large increasing of objective value under small probability.
Figure 7 illustrates the variation of best with different ρ. Smaller objective
values can be obtained when ρ is between 8 and 13. From the above, MSR
can work well when ρ is between 8 and 11 in terms of Fr , mean and best .

The impact of parameter ρ on the remaining test benchmarks obeys the
same law. We suggest applying a medium or little strong parsimony pressure,

666 XIAOXIAO WANG et al.

G
m

F
r

be
st

m
ea

n
st

.d
ev

.

B
en

ch
m

ar
k

SR
M

SR
SR

M
SR

SR
M

SR
SR

M
SR

SR
M

SR

hw
b6

77
79

28
34

0.
16

67
0.

16
67

27
5

16
1

35
2.

40
00

24
0.

40
00

39
.1

26
9

90
.4

69
9

5o
ne

24
5

10
14

96
9

1.
00

00
1.

00
00

64
61

70
.4

00
0

68
.5

66
7

5.
34

49
5.

06
79

m
aj

or
ity

5
86

2
10

34
1.

00
00

1.
00

00
84

74
13

2.
10

00
11

1.
86

67
21

.3
00

0
19

.2
47

5
m

od
5a

dd
er

41
1

39
6

1.
00

00
1.

00
00

83
76

13
6.

40
00

90
.6

66
7

75
.0

76
4

8.
71

12
m

od
15

ad
de

r
11

3
18

7
1.

00
00

1.
00

00
74

57
75

.5
00

0
73

.6
66

7
4.

17
35

3.
33

56
m

od
32

ad
de

r
31

4
46

1
1.

00
00

1.
00

00
18

5
12

9
20

5.
50

00
17

5.
56

67
19

.3
34

9
27

.2
16

5
m

od
64

ad
de

r
34

1
76

6
1.

00
00

1.
00

00
30

9
20

3
44

7.
76

67
35

7.
80

00
88

.0
86

9
66

.4
46

5
ha

m
7

84
6

73
8

0.
86

67
0.

93
33

56
55

71
.8

46
2

71
.4

64
3

8.
11

82
6.

18
53

nt
h

pr
im

e5
in

c
13

51
15

79
0.

90
00

0.
80

00
15

3
12

9
24

6.
00

00
19

2.
04

17
50

.9
67

1
35

.0
85

3
nt

h
pr

im
e6

in
c

30
68

39
89

0.
06

67
0.

16
67

59
0

54
9

61
0.

50
00

59
8.

20
00

28
.9

91
4

30
.8

01
0

Sh
if

t1
0

fix
ed

81
57

85
40

0.
40

00
0.

46
67

28
7

27
3

37
1.

16
67

31
7.

85
71

55
.3

23
6

13
.4

28
8

Sh
if

t1
5

fix
ed

19
34

8
19

32
4

0.
36

67
0.

36
67

55
1

48
1

61
0.

00
00

53
2.

54
55

37
.5

58
8

36
.8

36
8

Sh
if

t2
8

fix
ed

12
26

9
25

04
7

0.
06

67
0.

10
00

10
65

10
27

10
71

.5
00

0
10

56
.6

66
7

9.
19

24
26

.5
01

6
Pl

us
63

m
od

40
96

79
63

1
68

8
1.

00
00

1.
00

00
82

66
67

85
82

73
.2

00
0

82
17

.7
67

0
8.

87
23

27
0.

62
68

Pl
us

63
m

od
81

92
80

42
1

53
6

1.
00

00
1.

00
00

16
58

2
16

58
0

16
77

7.
00

00
16

92
5.

00
00

56
8.

51
09

55
4.

67
98

Pl
us

12
7m

od
81

92
78

42
5

46
5

1.
00

00
1.

00
00

16
45

7
16

45
5

16
96

1.
00

00
16

99
1.

00
00

10
90

.9
00

0
10

09
.3

00
0

TA
B

L
E

8
C

om
pa

ri
so

n
be

tw
ee

n
V

L
E

A
R

C
w

ith
SR

an
d

V
L

E
A

R
C

w
ith

M
SR

.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 667

FIGURE 5
Variation of feasible ratio with parameter ρ for 5one013, thirty runs were performed for each
value of ρ.

which corresponds to a value of ρ from the median of 2maxConNum−1 − 3
and 2maxConNum − 3 to 2maxConNum − 3. Moreover, we have done the similar
experiments about how to set step and to discover the relationship between
step and ρ. The details of all these experimental results may be obtained
from the author upon request.

FIGURE 6
Variation of the mean of the objective values of feasible solutions with parameter ρ for 5one013,
thirty runs were performed for each value of ρ.

668 XIAOXIAO WANG et al.

FIGURE 7
Variation of the minimum objective value of feasible solutions with parameter ρ for 5one013,
thirty runs were performed for each value of ρ.

6 CONCLUSIONS AND FUTURE WORKS

In this article, we presented VLEA RC, a new variable-length chromosome
evolutionary algorithm for quantum cost optimization of reversible Toffoli
networks. VLEA RC combines the heuristic information from the PPRM
expressions of a reversible function with the global search capability of EAs.
It does this by conducting a periodic population update operation, called
jump growth, in order to explore the modified search space. It was shown
to improve the convergence speed and the feasible ratio. Heuristic informa-
tion is used throughout this algorithm to improve efficiency. For example,
di f f T erm is used to estimate the maximum length of the chromosomes;
pre f Lib can be used during population initialization phase and during the
jump growth phase; maxConNum is used to set the upper limit of the num-
ber of control bits of randomly generated gates. Further, a modified constraint
solving method MSR is proposed which can strike a better balance between
decreasing the constraint violation and increasing the objective value so that
the average quantum cost of the circuit is decreased.

In the experimental study section, we verify our conjecture about MSR
and JG. Experimental results show that VLEA RC can solve problems not
only with small scale, but also with larger scale and higher complexity when
compared with other EAs for reversible circuit synthesis. It obtained solu-
tions which are better than or at least comparable to the best known solu-
tions as of late 2013. The software can potentially synthesize functions with
more than 20 variables, but as the number of variables grows, such as for

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 669

benchmarks: shi f t28 f i xed, nth prime6 inc and hwb6, the feasible ratio
drops quickly.

There are a number of possible directions for future research: a diversity
keeping scheme in variable length EAs for reversible circuit synthesis; a com-
bination of an EA with other methods, such as the decomposition method [8],
to enable the synthesis of large and complex reversible functions; a method
that would reduce the quantum cost of the generated circuits by introduc-
ing other types of gates, such as Peres gates [13] or mixed-polarity Toffoli
gates [42].

REFERENCES

[1] Charles H Bennett. (1973). Logical reversibility of computation. IBM Journal of Research
and Development, 17(6):525–532.

[2] D Michael Miller, Dmitri Maslov, and Gerhard W Dueck. (2003). A transformation based
algorithm for reversible logic synthesis. In Design Automation Conference, 2003. Pro-
ceedings, pages 318–323. IEEE.

[3] Dmitri Maslov, Gerhard W Dueck, and D Michael Miller. (2007). Techniques for the syn-
thesis of reversible Toffoli networks. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), 12(4):42.

[4] Dmitri Maslov, Gerhard W Dueck, and D Michael Miller. (2005). Toffoli network syn-
thesis with templates. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 24(6):807–817.

[5] Robert Wille and Rolf Drechsler. (2009). BDD-based synthesis of reversible logic for
large functions. In Proceedings of the 46th Annual Design Automation Conference, pages
270–275. ACM.

[6] Robert Wille and Rolf Drechsler. (2010). Effect of BDD optimization on synthesis
of reversible and quantum logic. Electronic Notes in Theoretical Computer Science,
253(6):57–70.

[7] Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi, and Zahra Sasanian. (2010).
Reversible circuit synthesis using a cycle-based approach. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 6(4):13.

[8] Mehdi Saeedi, Mehdi Sedighi, and Morteza Saheb Zamani. (2010). A library-based syn-
thesis methodology for reversible logic. Microelectronics Journal, 41(4):185–194.

[9] Vivek V Shende, Aditya K Prasad, Igor L Markov, and John P Hayes. (2003). Synthesis
of reversible logic circuits. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 22(6):710–722.

[10] Oleg Golubitsky and Dmitri Maslov. (2012). A study of optimal 4-bit reversible Toffoli
circuits and their synthesis. Computers, IEEE Transactions on, 61(9):1341–1353.

[11] Daniel Große, Xiaobo Chen, and Rolf Drechsler. (2006). Exact Toffoli network synthesis
of reversible logic using boolean satisfiability. In Design, Applications, Integration and
Software, 2006 IEEE Dallas/CAS Workshop on, pages 51–54. IEEE.

[12] Daniel Große, Robert Wille, Gerhard W Dueck, and Rolf Drechsler. (2009). Exact
multiple-control Toffoli network synthesis with SAT techniques. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 28(5):703–715.

670 XIAOXIAO WANG et al.

[13] Marek Szyprowski and Pawel Kerntopf. (2011). Reducing quantum cost in reversible Tof-
foli circuits. arXiv preprint arXiv:1105.5831.

[14] Pallav Gupta, Abhinav Agrawal, and Niraj K Jha. (2006). An algorithm for synthesis
of reversible logic circuits. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 25(11):2317–2330.

[15] Colin P Williams and Alexander G Gray. (1999). Automated design of quantum circuits.
Springer.

[16] André Leier and Wolfgang Banzhaf. (2004). Comparison of selection strategies for evolu-
tionary quantum circuit design. In Genetic and Evolutionary Computation–GECCO 2004,
pages 557–568. Springer.

[17] Cristian Ruican, Mihai Udrescu, Lucian Prodan, and Mircea Vladutiu. (2009). Genetic
algorithm based quantum circuit synthesis with adaptive parameters control. In Evolu-
tionary Computation, 2009. CEC’09. IEEE Congress on, pages 896–903. IEEE.

[18] Martin Lukac and Marek Perkowski. (2002). Evolving quantum circuits using genetic
algorithm. In Evolvable Hardware, 2002. Proceedings. NASA/DoD Conference on, pages
177–185. IEEE.

[19] Martin Lukac, Marek Perkowski, Hilton Goi, Mikhail Pivtoraiko, Chung Hyo Yu, Kyusik
Chung, Hyunkoo Jee, Byung-Guk Kim, and Yong-Duk Kim. (2004). Evolutionary
approach to quantum and reversible circuits synthesis. In Artificial intelligence in logic
design, pages 201–257. Springer.

[20] Taro Yabuki and Hitoshi Iba. (2000). Genetic algorithms for quantum circuit design-
evolving a simpler teleportation circuit. In Late Breaking Papers at the 2000 Genetic and
Evolutionary Computation Conference, pages 421–425. Citeseer.

[21] Timothy Reid. (2005). On the evolutionary design of quantum circuits. Master’s thesis,
Univ. of Waterloo, Ontario.

[22] Shengchao Ding, Zhi Jin, and Qing Yang. (2008). Evolving quantum circuits at the
gate level with a hybrid quantum-inspired evolutionary algorithm. Soft Computing,
12(11):1059–1072.

[23] Mingming Zhang, Shuguang Zhao, and Xu Wang. (2009). Automatic synthesis of
reversible logic circuit based on genetic algorithm. In Intelligent Computing and Intel-
ligent Systems, 2009. ICIS 2009. IEEE International Conference on, volume 3, pages
542–546. IEEE.

[24] Kamalika Datta, Indranil Sengupta, and Hafizur Rahaman. (2012). Reversible circuit
synthesis using evolutionary algorithm. In Computers and Devices for Communication
(CODEC), 2012 5th International Conference on, pages 1–4. IEEE.

[25] Wen-Hsin Wang, Chia-Hui Chiu, Shu-Yu Kuo, Sheng-Fei Huang, and Yao-Hsin Chou.
(2012). Quantum-inspired tabu search algorithm for reversible logic circuit synthesis. In
Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on, pages
709–714. IEEE.

[26] Ben Hutt and Kevin Warwick. (2007). Synapsing variable-length crossover: Meaningful
crossover for variable-length genomes. Evolutionary Computation, IEEE Transactions on,
11(1):118–131.

[27] Thomas P. Runarsson and Xin Yao. (2000). Stochastic ranking for constrained evolution-
ary optimization. Evolutionary Computation, IEEE Transactions on, 4(3):284–294.

[28] Rammohan Mallipeddi and Ponnuthurai N Suganthan. (2010). Ensemble of constraint
handling techniques. Evolutionary Computation, IEEE Transactions on, 14(4):561–579.

[29] Kalyanmoy Deb and Rituparna Datta. (2010). A fast and accurate solution of constrained
optimization problems using a hybrid bi-objective and penalty function approach. In Evo-
lutionary Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE.

VARIABLE-LENGTH CHROMOSOME EVOLUTIONARY ALGORITHM 671

[30] Abu SSM Barkat Ullah, Ruhul Sarker, David Cornforth, and Chris Lokan. (2007). An
agent-based memetic algorithm for solving constrained optimazation problems. In Evolu-
tionary Computation, 2007. CEC 2007. IEEE Congress on, pages 999–1006. IEEE.

[31] Stephanus Daniel Handoko, Kwoh Chee Keong, Ong Yew Soon, and Jonathan Chan.
(2011). Classification-assisted memetic algorithms for solving optimization problems
with restricted equality constraint function mapping. In Evolutionary Computation (CEC),
2011 IEEE Congress on, pages 1209–1216. IEEE.

[32] Abu SSM Barkat Ullah, Ruhul Sarker, and Chris Lokan. (2012). Handling equality
constraints in evolutionary optimization. European Journal of Operational Research,
221(3):480–490.

[33] Rituparna Datta and Kalyanmoy Deb. (2011). A bi-objective based hybrid evolutionary-
classical algorithm for handling equality constraints. In Evolutionary Multi-Criterion
Optimization, pages 313–327. Springer.

[34] Kalyanmoy Deb. (2000). An efficient constraint handling method for genetic algorithms.
Computer methods in applied mechanics and engineering, 186(2):311–338.

[35] Tetsuyuki Takahama and Setsuko Sakai. (2006). Constrained optimization by the ε con-
strained differential evolution with gradient-based mutation and feasible elites. In Evolu-
tionary Computation, 2006. CEC 2006. IEEE Congress on, pages 1–8. IEEE.

[36] Sean Luke and Liviu Panait. (2006). A comparison of bloat control methods for genetic
programming. Evolutionary Computation, 14(3):309–344.

[37] Hal Stringer and Annie S Wu. (2004). Winnowing wheat from chaff: The chunking GA.
In Genetic and Evolutionary Computation–GECCO 2004, pages 198–209. Springer.

[38] Il Yong Kim and Olivier L. De Weck. (2005). Variable chromosome length genetic algo-
rithm for progressive refinement in topology optimization. Structural and Multidisci-
plinary Optimization, 29(6):445–456.

[39] Inman Harvey. (1992). The saga cross: The mechanics of recombination for species with
variable length genotypes. In PPSN, page 271. Citeseer.

[40] Dominique Chu and Jonathan E Rowe. (2008). Crossover operators to control size
growth in linear GP and variable length GAs. In Evolutionary Computation, 2008. CEC
2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on, pages
336–343. IEEE.

[41] Ahmed Younes. (2012). Detection and elimination of non-trivial reversible identities.
International Journal of Computer Science, Engineering & Applications, 2(4).

[42] Marek Szyprowski and Paweł Kerntopf. (2013). Optimal 4-bit reversible mixed-polarity
toffoli circuits. In Reversible Computation, pages 138–151. Springer.

