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Based on our empirical studies of effective human tutoring, we developed an 
Intelligent Tutoring System, iList, that helps students learn linked lists, a chal-
lenging topic in Computer Science education. The iList system can provide 
several forms of feedback to students. Feedback is automatically generated 
thanks to a Procedural Knowledge Model extracted from the history of inter-
action of students with the system. This model allows iList to provide effec-
tive reactive and proactive procedural feedback while a student is solving a 
problem. We tested five different versions of iList, differing in the level of 
feedback they can provide, in multiple classrooms, with a total of more than 
200 students. The evaluation study showed that iList is effective in helping 
students learn; students liked working with the system; and the feedback gen-
erated by the most sophisticated versions of the system is helpful in keeping 
students on the right path. 
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1 INTRODUCTION

One of the most effective strategies to address weak learning, in any disci-
pline, is the interaction of students with tutors, skilled or even not as skilled 
[Bloom, 1984, Chi et al., 2001, Lu et al., 2007, Rothman and Henderson, 2011, 
VanLehn, 2011]. Abundant empirical evidence shows that an essential compo-
nent of learning from a tutor is the interactive dialogue that occurs, and the peda-
gogical strategies human tutors employ in such exchanges [Fox, 1993, Jeong and 
Chi, 2007, Chi, 2009, Di Eugenio et al., 2009, Chi et al., 2011, Lehman et al., 
2012, Ezen-Can and Boyer, 2013]. In turn, many researchers have attempted to 
incorporate human tutoring strategies in Intelligent Tutoring Systems (ITSs), 
computer systems designed to interact with students and help them learn. Many 
of these systems have been shown to be effective, although not yet at the level of 
human tutors [Person et al., 2001, Mitrovic et al., 2004, Evens and Michael, 2006, 
VanLehn et al., 2007, Di Eugenio et al., 2008, VanLehn, 2011]. 

Many strategies used by human tutors can be directly related to cognitive 
mechanisms, for example learning from errors [Ohlsson, 1996b, Ohlsson, 1996a, 
Ohlsson, 2010]. This mode of learning makes use of error signals: environmen-
tal events that tell the learner that a tentative problem solving step was inappro-
priate, incorrect or unproductive. We often broadly refer to such events as 
negative feedback, to include the interlocutor (the tutor) in the learner’s environ-
ment. A second mode of learning can be named, uncertainty reduction [Neves 
and Anderson, 1981, VanLehn, 1999, Sun et al., 2001]. This mode of learning is 
driven by information indicating that a problem solving step was appropriate, 
correct or useful, what we commonly call positive feedback [Barrow et al., 2008, 
Di Eugenio et al., 2009]. We hypothesize that to learn from this type of informa-
tion, the learner must either create a knowledge structure that recommends the 
action performed under the relevant conditions; or alternatively, increase the pri-
ority associated with the relevant knowledge structure to make its recommenda-
tion less tentative. 

Not surprisingly then, human tutors provide both negative and positive feed-
back, and ITSs have attempted at replicating this behavior, although mostly as 
concerns negative feedback [Anderson et al., 1995]: it is easier to recognize an 
error than to formulate the specific circumstances under which positive feedback 
should be provided. Our work is situated in this tradition. We have mined human-
human tutoring that we collected in the domain of introductory Computer  
Science (CS) in order to understand when human tutors provide different types  
of feedback. That analysis has been presented elsewhere [Ohlsson et al., 2007,  
Di Eugenio et al., 2009, Chen et al., 2011]. 



 Data Driven automatiC FeeDBaCk generation 7

In this paper, we present how a different type of data (rich traces of the steps 
that students took when solving problems) helped us operationalize the human 
data findings in order to automatically generate appropriate, modulated feedback 
in an ITS. These traces provided the basis to build what we call the Procedural 
Knowledge Model (PKM), that contains information about global students’ prob-
lem-solving behavior, specifically all possible solution paths that have been 
observed and their respective goodness towards reaching a solution. We also 
show that versions of the same ITS that are progressively more sophisticated as 
concerns tutorial feedback, engender progressively higher student learning (even 
if not significantly different, but importantly, for the most sophisticated version, 
indistinguishable from the human tutors). One additional dimension of feedback 
we will address is the distinction between reactive and proactive: tutors provide 
reactive feedback when they respond to an actual move (correct or incorrect) that 
the student has done; proactive feedback instead looks to the future, a preemptive 
action taken by the tutor in anticipation of future student moves. 

We address these questions in the context of iList, an ITS that helps students 
learn linked list, a fundamental Computer Science concept taught in introductory 
undergraduate curricula [Fossati et al., 2008, Fossati et al., 2009a, Fossati et al., 
2009b, Fossati et al., 2010]. We tested five different versions of iList, differing in 
type and level of feedback they can provide (see Table 1 in the next section), with 
more than 200 students in multiple classrooms. Versions 3–5 of iList provide 
feedback based on the PKM, which in turn was mined from the logs of the stu-
dents interacting with iList versions 1 and 2. We conducted a detailed analysis of 
the interactive behavior of students working with the system, and correlated it 
with their learning. Our evaluation study showed that iList is effective in helping 
students learn; that students liked working with the system; that the feedback 
generated by the most sophisticated versions of the system is helpful in keeping 
the students on the right path; and that version 5 of the system generates both 
more negative and positive feedback messages than any of the other versions. 

TABLE 1
Feedback types in iList

Feedback type iList-1 iList-2 iList-3 iList-4 iList-5

Syntax Minimal Yes Yes Yes Yes

Execution Minimal Yes Yes Yes Yes

Final Yes Yes Yes Yes Yes

Reactive procedural No No Yes Yes Yes

Proactive procedural No No No Yes but infrequent Yes
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The rest of this paper is organized as follows. Section 2 illustrates iList, and 
summarizes the different kinds of feedback it can provide. Section 3 is devoted to 
the PKM and how it was automatically built; Section 4 shows how it is used by 
iList to generate feedback. Section 5 presents a thorough evaluation of five ver-
sions of iList that differ in the kind of feedback they provide. Section 6 discusses 
our results, and presents current work on ChiQat-Tutor, the successor to iList.

2 THE ILIST SYSTEM

We developed iList [Fossati et al., 2008, Fossati et al., 2009a, Fossati et al., 
2009b, Fossati et al., 2010], an ITS in the domain of linked lists. Linked lists 
(lists for short) are perhaps the most fundamental data structure in CS (data 
structures is the generic CS term used to refer to information storage represen-
tations). The main idea behind linked lists is that different pieces of information 
can be “linked” one after each other and then accessed sequentially. A common 
graphical representation of lists makes use of boxes and arrows (like those in 
Figure 1). The iList system allows students to explore and learn about linked 
lists by operating on scenarios in which lists can be manipulated with program-
ming language commands. The environment is interactive, and the visualiza-
tion of linked lists is updated in real time according to the actions performed by 
the students. The system provides a set of problems that can be solved by pro-
viding sequences of operations that transform the original lists into the desired 
configurations. 

FIguRE 1
A screenshot of iList.
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The user interface of iList is displayed in Figure 1. The top-left corner contains 
the problem view, where a student can select a new problem, read its definition, 
and submit a solution to the system. The left and central parts of the screen show 
a visualization of the current state space of the simulated environment. The right 
part of the screen includes the operation panel, where students can enter com-
mands to manipulate the state space. Occasionally, iList pops up a new window 
containing tutorial feedback messages. Those windows disappear when students 
close them. However, the history of feedback messages is available in the top-
center part of the screen, the feedback view. One of the main advantages of this 
user interface is that it makes the abstract concept of linked lists much more con-
crete. Making a connection between a static data structure and the dynamic pro-
cedures necessary to manipulate it can be a challenge. With its interactive 
interface, iList makes such connections more explicit and accessible. 

In appropriate circumstances, iList provides feedback to students. There are 
five types of feedback: syntax, execution, final, reactive procedural, and proac-
tive procedural feedback, provided in different combinations by the five different 
versions of iList we developed (see Table 1). 

Syntax feedback is provided in reaction to genuine syntax errors, which occur 
when a student types in something that can not be interpreted by iList. The parser 
of iList is fairly resilient, and tolerates minor syntactical imperfections. When the 
mistake is more substantial, iList tries to match the student’s input with a set of 
error rules that are then used to generate a descriptive error message. Example: 
“You’re trying to write a pointer assignment statement, right? Did you mean ‘− >’ 
instead of ‘>’ ?” 

Execution feedback happens when a student enters a command that is syntacti-
cally correct, but the command cannot be executed because of the current con-
figuration of the state space. A typical case would be a student trying to reference 
a variable that has not been declared. Example: “Sorry, I can’t do that. Variable T 
does not exist.” 

Final feedback is delivered when a student believes he or she is done with the 
problem and clicks the “Submit” button. At this point, iList evaluates the correct-
ness of the solution using a constraint-based approach [Ohlsson, 1992]. If the 
solution is incorrect, the information from the violated constraints is used to build 
an explanatory message. Example: “The list L has incorrect values. You have lost 
one or more nodes.” 

Reactive procedural feedback is given during the problem-solving process, in 
reaction to student moves. The system evaluates student moves using a Proce-
dural Knowledge Model (PKM) that is automatically constructed from the inter-
action with previous students. Reactive procedural feedback is dynamically 
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generated by comparing the state spaces before and after a student’s move, and 
explaining the effects of that move to the student. Reactive procedural feedback 
can be used to correct a student’s mistake (negative feedback) or to reinforce the 
understanding of correct moves (positive feedback). Example: “Mmmhh … 
Probably you can’t go very far from here … Node 2 was pointing to node 1, now 
it points to node 3. Node 1 was being targeted by node 2 but now it is abandoned.” 

Proactive procedural feedback is also given during the problem-solving pro-
cess, but instead of reactively responding to students’ past actions, iList tries to 
anticipate the future moves of a student, and possibly initiates a tutorial interac-
tion with the student. An example of this rather sophisticated interaction is 
reported later. 

Reactive and Proactive feedback are clearly the more sophisticated kinds of 
feedback iList can provide. In part, they are motivated by our analysis of human-
human tutorial interactions in the introductory CS domain. For example, whereas 
many ITSs provide reactive negative feedback when a student makes a mistake, 
far fewer provide positive feedback; in our study of the human-human tutoring 
dialogues, we found that positive feedback did correlate with students’ learning 
[Fossati et al., 2009b, Chen et al., 2011]. However, the pedagogical strategies we 
uncovered do not specify the conditions that trigger this kind of feedback to the 
level of detail required by a computational implementation. Specifically, to gen-
erate this kind of feedback, we need to be able to computationally evaluate the 
goodness of a student move and the level of uncertainty of the student in making 
that move. Both factors can be quantitatively estimated from the PKM which we 
developed by mining the interactions of the students with iList itself.

3 STUDENT TRACKING

3.1 Procedural knowledge model
Traditional model tracing techniques would allow us to determine goodness of 

a state and assess the student’s uncertainty. However, the process of manually 
encoding procedural models for each problem is expensive, time consuming, and 
rigid. Additionally, problems in the linked list domain allow a great degree of flex-
ibility, as many different paths can lead to a successful solution. Anticipating all 
the possible correct and incorrect paths and manually encoding them into the sys-
tem would be almost impossible. Following [Merceron and Yacef, 2005, Barnes 
and Stamper, 2008, Carlson et al., 2013, Kinnebrew et al., 2013], we applied a 
machine learning approach to automatically generate a useful model from the past 
interactions of students with iList. The core of our model is a probabilistic graph 
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equivalent to a Markov Chain. Its main components are states and actions. A state 
is a snapshot of iList’s virtual machine, which includes the simulated linked lists. 
The model is represented with a simple directed graph with two types of vertices, 
state vertices and action vertices, and the constraint that a state vertex can point 
only to action vertices, and that an action vertex must point to exactly one  
state vertex. The set of actions in the graph is associated with a probability mass 
function. So, each action is associated with the probability that a student will take 
that action. 

Figure 2 shows an example of graph for problem 1, generated from only one 
student session for reading clarity. “undo,” “redo,” and “restart” operations are 
not represented in this graph. In reality, the model is generated from the interac-
tions of the students with the first two versions of iList, and the size of training 
data and resulting models are as shown in Table 2. 

The algorithm to build the graph works as follows. First, iList scans and exe-
cutes the student actions recorded in past log files. For each action, a new state is 
generated. If the new state can be matched to a state already present in the graph, 
the frequency of the pre-existing state is updated; otherwise, the new state is 
added to the graph. A similar procedure is performed for actions. Then, iList 
checks if a newly added state is a correct solution for the current problem. In that 
case, the state is connected to a special “success” node. Each state gets also anno-
tated with statistics about the time students took to exit from that state. 

The matching process for states and actions is not trivial. We wanted iList to 
be able to match semantically equivalent state spaces. A state space in iList is also 
represented with a properly annotated graph. Matching is performed by looking 
for isomorphism relations between two states. If more than one isomorphism 
relation is found, iList looks back at the matching history to disambiguate and 
choose the appropriate one. 

Finally, after the construction of the graph is completed, the entire graph is 
traversed and two important quantities are computed. The frequencies associated 
to states and actions are converted into probabilities using maximum likelihood 
estimation. These probabilities are stored in the edges of the graph. Then, iList 
computes a goodness value (g) for each state of the graph. The g value represents 
a lower bound on the probability that a student traversing that state will eventually 
reach a correct solution. It is calculated by summing the log-probabilities of the k 
most likely paths (with k empirically set to 10) from the current state to the special 
“success” node to which all the correct states are linked. This computation can be 
done efficiently with a variation of the traditional Bellman-Ford algorithm, a label 
correcting algorithm that computes shortest paths in weighted directed graphs. 
The algorithm is implemented in the JgraphT library [Naveh and Sichi, 2003]. 
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FIguRE 2
Example of generated graph. The thickness of the border is proportional to the g value.
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Additionally, iList computes and stores the criticality (c) of each node. The criti-
cality of a node is the probability that a student will get into a “hopeless” state (a 
state with g = 0) at the next step from the current node. It is calculated by counting 
the number of direct transitions from the current state to those states with g = 0, 
then dividing it by the total number of transitions from the current state. 

At run-time, when a new student comes in, his/her actions are matched against 
the graph. The comparison between the student’s behavior and the model allows 
iList to make inferences and generate feedback, using the strategies we discuss in 
section 4.

3.2 Learning curve of the model 
For the model to be useful in practice it is important that a high percentage of 

the actions of new students can be matched to the model. The main hypothesis 
behind the model is that even though the state space of the graph is potentially 
infinite, only a relatively small number of states can represent most students’ 
actions. We calculated the learning curve of our models by training them incre-
mentally and counting the percentage of matched states as each session is added 
to the model. We repeated the procedure 10000 times randomly shuffling the 
dataset each time, and averaged the resulting curves. 

Figure 3 shows the learning curves for all the problems. In these experiments 
the maximum standard error of the mean is 0.003, which is too small to be plotted 
on the figure. Notice that the models can be learned quickly. For problem 1, the 
80% match level is reached after just 3 training sessions; the 85% match level 
after 9 session; and more than 90% of the states can be matched after 30 sessions. 
For the other problems the learning rate is slower, with problem 4 being the slow-
est. For problem 4, the 80% match level reached after 64 training sessions; the 
85% match level after 127 session; and the 90% level is never reached with the 

TABLE 2
Size of the Procedural Knowledge Models for different problems

Training dataset Problem Dataset size Model size

Sessions Actions State nodes Action nodes

Problem 1 149 1360 272 353

Problem 2 155 2688 742 960

iList-1 + iList-2 Problem 3 136 1165 269 356

Problem 4 89 1078 356 467

Problem 5 65 758 240 290
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available data. Notice that the lines of problem 4 and 5 are shorter, because fewer 
students worked on these problems in our past iList trials (see Figure 2). We 
believe that the steepness of the learning curve depends on the complexity of a 
problem. On easier problems, students make fewer “creative” moves than they do 
on more difficult ones. This leads to more predictable actions and consequently a 
faster learning of the model.

4 REACTIVE AND PROACTIVE FEEDBACK GENERATION

4.1 Reactive procedural feedback
In a tutoring context, reactive feedback is given in response to student actions 

that were not explicitly prompted by the tutor. In an exploratory environment like 
iList this is the dominant case, as students are working on solving problems on 
their own. iList evaluates a student’s move on two main factors: the goodness of 
the move, that we just discussed, and the level of uncertainty of the student in 
making that move. 

Student’s uncertainty is estimated by monitoring the time taken by the student 
to make the move, and the student’s “undo behavior.” If the time taken by the 
student is more than a standard deviation greater than the average time spent by 
past students at that same point, plus a correction factor based on a student’s  
personal history, then the student is considered uncertain. Also, if the student 

FIguRE 3
Learning curve of the procedural knowledge model.



 Data Driven automatiC FeeDBaCk generation 15

performed an “undo,” “redo,” or “restart” operation at that point in the past, he/
she is considered uncertain there. 

More specifically, the feedback generation algorithm works as follows. If the 
student just got into a “hopeless” state, i.e., a state from which the estimated prob-
ability of success is zero, then a negative feedback message is generated, to help 
the student get unstuck. If the student has made a good move, i.e., has improved 
his/her probability of reaching a correct solution, and the student showed uncer-
tainty, then a positive feedback message is provided. The rationale is that a stu-
dent could have performed a correct but tentative move. In this situation, positive 
feedback can help consolidate correct knowledge that the student has not fully 
acquired yet. Moreover, it has been shown that human tutors may regulate their 
feedback according to student uncertainty [Forbes-Riley and Litman, 2008]. 

Reactive feedback has two main components. The first part is a content-free 
sentence expressing the goodness of the student’s move, such as “Mmmhh … 
Probably you can’t go very far from here” (negative feedback) and “good move!” 
(positive feedback). This is followed by a summarization of the effects of that 
move on the problem state space, for example “Node 2 was pointing to node 1, 
now it points to node 3. Node 1 was being targeted by node 2 but now it is aban-
doned.” This explanation is dynamically generated comparing the previous state 
with the current state, then reporting the differences between those states. The 
facts to be communicated are chosen using a set of rules. Finally, the surface 
realization is performed using the SimpleNLg library [Reiter, 2007].

4.2 Proactive procedural feedback 
Sometimes, providing feedback after a student made a move is too late. As we 

saw in our study of human tutoring [Di Eugenio et al., 2009, Chen et al., 2011], 
tutors often proactively anticipate the next student move and intervene with guid-
ance to steer them in the right direction. Sometimes, tutors explicitly tell students 
what to do (direct procedural instruction), other times they try to elicit the right 
move from the student using more subtle strategies, such as a hint “hidden” 
within a question or prompt. 

In the strategy implemented in iList, we decided to combine elements of direct 
procedural instruction hidden in a tutor-student interaction which includes the 
following elements: 

1. A question from the tutor. It is composed of three parts: 
 1. a statement of the goal to be achieved by the following move; 
 2. the explicit question about how to accomplish that goal; 
 3.  a set of up to four choices, which includes the correct answer and some 

of the most frequent incorrect answers given by students. 
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Example: “Let’s see what we can do now … Pointer T is pointing to node 5, 
we want it to point to null. How would you do that? (1) T = NuLL; (2) delete T;” 

2. An answer from the student, given by clicking one of the given choices. 
3. Feedback from the tutor. If the answer was right, the message is a positive 

statement such as “That sounds right! I suggest you try it now.” If the answer 
was incorrect, the message points out the mistake and illustrates the conse-
quences of that choice. Example: “uhmm … This is probably not a good 
idea. Here is what will happen if you do what you suggested. You will delete 
the node that is pointed by pointer T and that contains 2. Variable T is now 
pointing to node 2, then it will point to garbage.”

Once the interaction has started, the student must complete the three steps 
described above before he/she can continue working on the problem. To decide 
when to start this type of interaction, iList monitors the student’s activity. If the 
situation is considered critical and enough time has elapsed since the last move, 
iList initiates the proactive interaction. 

Remember that at each state iList estimates two useful quantities: g (good-
ness), the probability that the student will eventually reach a correct solution from 
the current state; and c (criticality), the probability that the student will make a 
fatal mistake at the following step. A necessary condition for a proactive interac-
tion to be initiated is that g > 0 and c > 0, which means that the current state is 
not hopeless but somewhat critical. The threshold value c = 0 for criticality was 
determined experimentally, by simulating the effects of different threshold values 
on our training data. 

The exact time to initiate a proactive interaction is also determined by the 
context. The amount of time is determined by four variables: mean and standard 
deviation of the time that previous students spent into the current state; the criti-
cality of the current state, as defined above; and a measure of the correctness of 
the current student’s behavior B, defined as a smoothed function of how often the 
student visits “good” or “bad” states (n is the current step, n−1 is the previous 
step, g is the goodness of the current state):

 B x B x
g

gn n= + − = =
=
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0 0
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if
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The delay T after which the proactive interaction will start is determined by the 
following formula, where μ

T
 , σ

T
 are the mean and standard deviation of students’ 

think time in the current state (i.e., the time students spent in that state before 
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moving on to the next); B is the behavior of the current student; c is the criticality 
of the current state:

 T T T T B c T
T

T T

T T

= + − − = −
= +

min max min min

max

( ) ( ) max( , )
max( , )

1 5
5
µ σ
µ σ

 

Essentially, the above formula chooses a delay T between plus and minus a 
standard deviation from the mean student think time in the current state, modu-
lated by the current student’s behavior value B. If the student has a generally good 
behavior (B closer to 1), T will be longer; conversely T will be shorter if the  
student has a generally worse behavior (B closer to 0).

5 EVALUATION

In this section, we evaluate five versions of iList (Table 1). The first two ver-
sions (iList-1, iList-2) provide syntax, execution, and final feedback. iList-3  
adds reactive procedural feedback. The two most advanced versions (iList-4 and 
iList-5) can also generate proactive procedural feedback. The only difference 
between iList-4 and iList-5 is a threshold value that caused iList-4 to generate 
very few proactive feedback episodes. We evaluate the systems on three student-
centered dimensions: learning, satisfaction, and problem-solving behavior.

5.1 Student learning
To measure student learning, all students took a test before and after their 

interaction with the system. We compared the 5 versions of iList with a control 
group of students that did not receive any form of instruction between the tests, 
and another group of students that interacted with a human tutor. The learning 
gain of the seven groups of students is reported in Table 3.

ANOVA revealed an overall significant difference among the seven groups  
(F (6, 319) = 3.04, P = .007). Tukey post-hoc tests revealed significant differ-
ences only between the control group and the human tutored group (P = .004), 
and between the control group and iList-5 (P = 0.021). The point-to-point differ-
ences between the multiple versions of iList is not significant, but the progression 
of effect sizes indicates an overall positive performance trend. The performance 
of iList is comparable to human tutors.

5.2 Student satisfaction
After working with iList, students filled in a survey to report their satisfaction 

with the system. The survey included seven 5-point Likert scaled questions, plus 
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an open ended question asking for general comments on the system. Each indi-
vidual student saw only one version of the system. Mean and standard deviation 
of the numeric answers are reported in Table 4.

Overall, students liked the system, especially the latest versions, which they 
considered more helpful (question 1, ANOVA: F (4, 209) = 4.44, P = .002; Tukey: 
iList-5 > iList1, P = .003; iList-5 > iList-2, P = .001). Interestingly, they found the 
feedback of the newer versions of iList more useful (question 5, ANOVA:  

TABLE 3
Learning gain of students in seven conditions

Tutor N Pre-test Post-test Gain

μ σ μ σ μ σ

None 53 .34 .22 .35 .23 .01 .15

iList-1 61 .41 .23 .49 .27 .08 .14

iList-2 56 .31 .17 .41 .23 .10 .17

iList-3 19 .53 .29 .65 .26 .12 .24

iList-4 53 .53 .24 .63 .22 .10 .16

iList-5 30 .37 .24 .51 .26 .14 .17

Human 54 .40 .26 .54 .26 .14 .25

TABLE 4
Survey, scaled questions (1 = No to 5 = Yes)

Question iList-1 iList-2 iList-3 iList-4 iList-5

μ σ μ σ μ σ μ σ μ σ

1.  Do you feel that iList helped you 
learn about linked lists?

2.9 1.1 2.9 1.1 3.2 1.4 3.3 1.4 3.9 1.2

2.  Do you feel that working with 
iList was interesting?

4.0 1.1 3.8 1.1 3.3 1.3 3.8 1.2 4.0 1.2

3.  Did you read the verbal feedback 
the system provided?

4.1 1.1 4.1 1.0 3.5 1.5 4.3 1.1 4.6 0.8

4.  Did you have any difficulty 
understanding the feedback?

2.8 1.5 2.9 1.2 3.5 1.2 2.9 1.4 3.4 1.3

5.  Did you find the feedback useful? 2.6 1.2 3.0 1.0 2.8 1.4 3.4 1.1 3.4 1.2

6.  Did you ever find the feedback 
misleading?

2.3 1.3 2.4 1.1 3.2 1.4 2.8 1.4 3.2 1.3

7.  Did you find the feedback 
repetitive?

3.8 1.2 3.1 1.1 4.2 1.0 3.2 1.4 3.2 1.3
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F (4, 209) = 4.46, P = .002; Tukey: iList-4 > iList-1, P = .004; iList-5 > iList-1, 
P = .01) but sometimes misleading (question 6, ANOVA: F (4, 209) = 4.27,  
P = .002; Tukey: iList-3 > iList-1, P = .097, marginally significant; iList-5 >  
iList-1, P = .01; iList-5 > iList-2, P = .02). It is not clear why the feedback may be 
considered misleading, as iList does not communicate incorrect information. A 
confusing factor may be that the meaning of the scale is reversed (lower values are 
better) for that question. Retrospectively we should have rephrased the survey to 
make the scale consistent. From question 7 (feedback repetitiveness, ANOVA: F (4, 
209) = 5.33, P = .0004), the feedback of the old iList-1 is considered more repeti-
tive that that of iList-2 (Tukey: P = .01) and iList-4 (P = .04); the feedback of 
iList-3 is more repetitive than that of iList-2 (P = .008), iList-4 (P = .02), and 
iList-5 (P = .06, marginally significant). From question 3 (ANOVA: F (4, 209) = 
3.56, P = .008), students reported to have read the feedback of iList-3 less than that 
of iList-4 (Tukey: P = .04) and iList-5 (P = .006). The user satisfaction scores 
dropped in iList-3, most likely due to a severe crash of the lab’s network that forced 
them to repeat the experiment on a different day. This accident shows how the 
acceptance of a tutoring system can be affected by external factors, which is a con-
cern when migrating from a controlled experimental setting to the real world.

Linear regression showed significant correlations between some of the ques-
tions and learning gain. In particular, there is a positive correlation between ques-
tion 1 (system helpfulness) and learning (R 2 = .08, β = .29, F (1, 210) = 18.7, 
P<.001); a positive correlation between question 5 (feedback usefulness) and 
learning (R 2 = .02, β = .15, F (1, 210) = 4.94, P = .027); and a negative correla-
tion between question 7 (feedback repetitiveness) and learning (R 2 = .05,  
β = −.23, F (1, 210) = 11.3, P<.001).

5.3 Student behavior
We wanted to understand in more detail the features of the student-system 

interaction that mostly correlate with learning. The interaction of iList and the 
students was comprehensively logged. From the log files, we extracted several 
features and compared them using ANOVA and linear regression. We highlight 
the impact of problem solving, path goodness, and positive versus negative 
feedback.

Problem solving
The problems included in iList’s curriculum are of increasing difficulty, as can 

be seen from the success rate for each problem (Figure 4). ANOVA revealed over-
all significant differences among the five groups on the number of problems suc-
cessfully solved by the students (F (4, 214) = 19.5, P<.001). Tukey post-hoc test 
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pointed out that all the pairs are significantly different (P<.05), except iList-1/
iList-4 and iList-3/iList-5. The three groups that worked with a version of iList 
enhanced with procedural feedback (iList-3, iList-4, and iList-5) generally solved 
more problems. Linear regression showed a positive correlation between the 
number of problems solved and learning: generally, students that solved more 
problems also learned more (N = 219, β = .31, t = 4.73, P<.001, R 2 = .09).

Path goodness
using the PKM, we can assess the goodness of entire student paths, defined 

as the average goodness of the states visited by a student while solving a prob-
lem. If procedural feedback has an effect, we would see an increase in the aver-
age path goodness from the first two versions of iList, which did not provide 
procedural feedback, and the latest three, which provided procedural feedback 
of varying degree. Indeed, we observed such an increase (for iList-1 and iList-2 
combined, μ = .19, σ = .13; iList-3 + 4 + 5, μ = .31, σ = .11). ANOVA found 
overall significant differences (F (4, 214) = 19.1, P<.001). Tukey confirmed all 
the pairwise differences (P<.05), except iList-3/iList-5 and iList-4/iList-5 
which are not significantly different, and iList-1/iList-4 which are marginally 
different (P = .089). The difference between iList-1 and iList-2 was unexpected. 
Linear regression found significant positive correlation between path goodness 

FIguRE 4
Success rates per problem, per system.
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and learning (N = 219, β = .28, t = 4.30, P<.001, R 2 = .08). This finding sup-
ports the validity of the PKM and the strategy of iList, which guides the stu-
dents towards productive paths.

5.4 Positive and negative feedback
The PKM allows iList to provide more feedback, in particular positive feed-

back, in addition to the relatively more primitive syntax, execution, and final feed-
back (Table 1). This makes the latest three versions of iList able to cover more 
learning opportunities than the first two versions of the system. The different 
groups of students received significantly different amounts of feedback of every 
type (all the ANOVAs have overall P<.001, pairwise differences vary). Figure 5 
illustrates the average number of different types of messages that are provided by 
the five versions of iList. Recall that iList-1 and iList-2 cannot provide reactive or 
proactive feedback of any sort, they only provide positive feedback as concerns 
having solved the problem (final), and negative feedback as concerns not having 
solved the problem (final), syntax and execution. This is why in Figure 5, negative 
feedback is grouped into two types: syntax + execution, and final + reactive + 
proactive. As concerns negative feedback on syntax and execution, it progres-
sively decreases from iList-1 to iList-4, but it increases back in iList-5. We do not 
have a convincing explanation for this finding: apparently the last group of stu-
dents was more prone to syntax errors. As concerns the second type of negative 
feedback, we can see that it progressively increases from iList-1 to iList-5. The 
increase is due to increasingly generating more reactive and proactive negative 

FIguRE 5
Number of feedback messages, grouped by type, in the 5 versions of the system.
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feedback messages – recall that iList-3 does not generate proactive feedback, but 
it still generates fewer reactive negative feedback messages than iList-4 and iList-5 
(please refer to [Fossati, 2009], specifically Table XIII, for further details). As 
concerns positive feedback, notice that the number of positive final feedback mes-
sages is basically constant across the five versions of iList, since it is almost equal 
to the number of problems solved by the students: usually a student receives only 
a single “good job, you have solved the problem” message before moving to the 
next problem. The amount of positive procedural (reactive + proactive) feedback 
increases remarkably in the most recent versions of the system. In iList-5, the ratio 
of positive procedural feedback over negative procedural feedback is approxi-
mately 2.5 to 1.

Hence, we have demonstrated that the last versions of iList (4 and 5) generate 
progressively more reactive and more proactive messages of both types. How-
ever, linear regression did not find any significant correlation between the number 
of feedback messages of various types and learning gain (excluding the positive 
final messages, because they are equivalent to the number of problems solved).

6 DISCUSSION AND CONCLUSIONS

In this paper, we presented a study with several important contributions. Our 
iList tutoring system is among the first systems that tutor Computer Science data 
structures. The graphical interface of iList is designed to help bring an abstract and 
difficult concept like linked lists to a more concrete level. Moreover, iList brings 
together the static representations of lists to the procedures used to manipulate 
them. An innovative feature of iList is its PKM automatically extracted from previ-
ous interactions of students with the system. To date, iList is among the few sys-
tems that can build such a statistical model automatically (another relevant example 
is the logic proof tutor developed by Barnes and Stamper [Barnes and Stamper, 
2007, Barnes and Stamper, 2008]) and is the first one that uses it to provide the 
kind of reactive and proactive procedural feedback described in this paper.

The evaluation of iList was conducted in a “real world” setting, where more 
than 200 students worked with the system in multiple classrooms. The results 
showed that iList-5 is as effective as human tutors in helping students learn; stu-
dents liked working with the system and found it useful; and the procedural feed-
back automatically generated by the most advanced versions of iList effectively 
guides students towards the right solution paths. We also showed that these same 
versions of iList (4 and 5) generate progressively more reactive and more proac-
tive messages, both positive and negative. A limitation of the evaluation study we 
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conducted is its incremental nature. The study was conducted over several semes-
ters across different institutions. Thus, it is difficult to factor out numerous con-
founding variables such as differences in student population. Future evaluations 
will be run in a way more conducive to controlling for such differences.

From an instructional perspective, our system initially relied mostly on stu-
dents’ exploration of its simulated environment. Such exploration was supposed 
to encourage knowledge construction, according to constructivist learning theo-
ries [Piaget, 1954]. However, more recent evidence suggested that minimally 
guided instruction does not work as well as expected [Kirschner et al., 2006], and 
students do benefit from some direct guidance from instructors or more experi-
enced peers. In ITSs it is difficult to determine a good balance between explora-
tion and direct guidance. For example, it has been shown that providing on-demand 
help can also have detrimental effects because it can encourage students to cheat 
[Baker et al., 2004]. In our experiments with iList we progressively increased the 
amount of guidance provided by the system, but we always kept the system in 
control of when to provide hints: no on-demand help was ever implemented. Our 
results show that this approach is effective. Of course more studies are needed to 
extend and generalize these findings to other systems and other domains.

The iList project is now completed, but our work on intelligent learning envi-
ronment to support CS education is not over. iList is the starting point for ChiQat-
Tutor, a new system that we recently started developing. ChiQat-Tutor will extend 
iList in several ways. First of all, ChiQat-Tutor will support additional data struc-
tures such as binary search trees and stacks, and algorithmic strategies such as 
recursion. ChiQat-Tutor will also use additional tutoring strategies such as 
worked-out examples and analogies. Similarly to iList, ChiQat-Tutor is inspired 
by findings from our corpus of human tutoring in Computer Science [Di Eugenio 
et al., 2013].

At this point, iList is a mature system to support learning linked lists. Since the 
time of the original study presented in this paper, iList has been used by hundreds 
more students in many different institutions around the world. The system is 
freely available on the web at http://www. digitaltutor.net. We encourage Com-
puter Science instructors to try iList, use it with their students, and give us com-
ments and advice on how to improve the system.
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HIGHLIGHTS

 • Feedback mechanisms to students: generation and evaluation of multiple 
forms of feedback.

 • Novel educational data mining applications: automatic generation of proce-
dural knowledge models.

 • Practical tools for instructors: an intelligent tutoring system for computer sci-
ence education.
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