APPENDIX

A. Algorithms

Algorithm 1 Conversion of Wireless Data Broadcast into DAG (CWDB-DAG)

```
Input: Data items to be broadcast on the ith channel in the jth time slot c(i, j), 1 \leq i \leq j
N, T_1 \leq j \leq T_2;
 Output: Converted DAG G(V, E), it is denoted by Matrix M(num, num);
 1: Let num = 0;
 2: for i = 1 to N do
 3: for j = T_1 to T_2 do
 4: if c(i, j) \neq NULL then
      num + +; node_{num}.time = j; node_{num}.data = c(i, j); node_{num}.channel = i;
 5:
     end if
 6:
 7: end for
 8: end for
 9: M(num, num) = 0;
10: for i = 1 to num do
11: for j = i + 1 to num do
12: if node_i.data \neq node_j.data and node_i.channel = node_j.channel then
13:
       if node_i.time < node_j.time then
14:
         M(i, j) = 1; node<sub>j</sub>.indegree + +; node<sub>i</sub>.outdegree + +;
15:
         break;
16:
       else if node_i.time < node_j.time then
17:
         M(j,i) = 1; node<sub>i</sub>.indegree + +; node<sub>j</sub>.outdegree + +; break;
18:
       end if
19:
      end if
20: end for
21: end for
22: for i = 1 to num do
23: for j = 1 to num do
24: if node_i.data \neq node_j.data and node_i.channel \neq node_j.channel then
25:
       if node_i.time < node_j.time - 1 then
        M(i, j) = 1; node_j.indegree + +; node_i.outdegree + +; break;
26:
27:
       else if node_j.time < node_i.time - 1 then
28:
        M(j,i) = 1; node<sub>i</sub>.indegree + +; node<sub>j</sub>.outdegree + +; break;
29:
       end if
30: end if
31: end for
32: end for
```

Algorithm 2 Discovery of All Paths (DAP)

Input: M(num, num); **Output**: set of all paths *P*; 1: $P \leftarrow NULL$; 2: find the node set V_{in} which indegree of node is 0; 3: find the node set V_{out} which outdegree of node is 0; 4: while $V_{in} \neq NULL$ do 5: get a node $v_{in_i} \in V_{in}$; 6: get a node $v_{out_i} \in V_{out}$; 7: find a path p_k from v_{in_i} to v_{out_j} through using DFS; 8: mark all edges in p_k ; 9: if all edges $e \in E$ are marked then 10: break; 11: else 12: $P \leftarrow p_k;$ 13: end if 14: end while

Algorithm 3 Approximate Data Retrieval on Single Antenna (ADR-SA)

Input: broadcast cycle $[T_1, T_2]$, channel set with requested data items C, the set of requested data items D_k , and the number of channels N; **Output**: optimal data retrieval sequence P_{opt} ; 1: $t = T_1$; 2: while $t \le T_2$ do 3: converted $DAG(C, T_1, T_2, N)$; 4: end while 5: DAP(M); 6: find the minimal set cover S based on P and D_k ; 7: according to D_k , delete un-requested data items in S; 8: $P_{opt} \leftarrow S$;

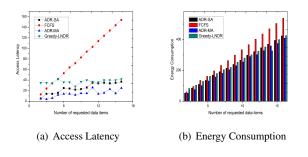
Algorithm 4 Approximate Data Retrieval on Multiple Antennae (ADR-MA)

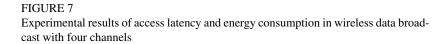
Input: broadcast cycle $[T_1, T_2]$, channel set with data items C, the set of requested data items D_k , and the number of channels N;

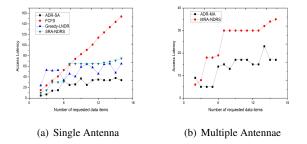
Output: optimal data retrieval sequence P_{opt_1}, P_{opt_2} ;

1: $t = T_1$, antennae = 2;

2: while $t \leq T_2$ do


3: converted $DAG(C, T_1, T_2, N)$;


4: end while


5: Path = DAP(M);

- 6: if $|D_k| \leq a$ then
- 7: D_k is divided into two subsets of data items D_{k_1}, D_{k_2} , and store all patterns in $PAT = \{pat_1, pat_2, \cdots, pat_{|PAT|}\};$
- 8: else
- 9: for i = 1 to $\lfloor \frac{|D_k|}{2} \rfloor$ do
- 10: randomly select *i* patterns *pat* of the split $\{D_{k_1}, D_{k_2}\}$ on D_k where $|D_{k_1}| = i$ and $|D_{k_2}| = |D_k| - i$, and store them to PAT_i ;
- 11: $PAT \leftarrow PAT \cup PAT_i;$
- 12: **end for**
- 13: end if
- 14: for i = 1 to |PAT| do
- 15: find the minimal set cover sequences P_{opt_1} and P_{opt_2} from Path on the basis of D_{k_1} and D_{k_2} in pat_i ;
- 16: according to P_{opt_1} and P_{opt_2} , compute the access latency and store as t_{pat_i} ;
- 17: end for
- 18: find a pattern which has the minimal access latency and output the corresponding retrieval sequences on two antennae P_{opt_1} and P_{opt_2} .

B. Experimental Results

FIGURE 8

Experimental results of access latency in wireless data broadcast with six channels and the client on single antennae and multiple antennae

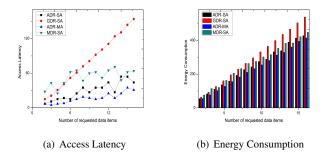
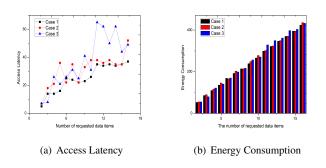
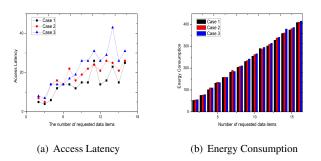




FIGURE 9 Experimental results of access latency and energy consumption in wireless data broadcast with eight channels

FIGURE 10

Experimental results of access latency and energy consumption for ADR-SA applied to three cases in wireless data broadcast with four channels

FIGURE 11

Experimental results of access latency and energy consumption for ADR-MA applied to three cases in wireless data broadcast with four channels