Int. Journ. of Unconventional Computing, Vol. 12, pp. 341-362 ©2016 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

Brownian Circuits: Designs

JIA LEE!, FERDINAND PEPER%34%* SORIN D. COTOFANAS,
MAKOTO NARUSEZ, MOTOICHI OHTSU’, TADASHI KAWAZOES,
YASUO TAKAHASHI?, TETSUYA SHIMOKAWAZ3® LAszLO B. KisH10
AND TOHRU KuBOTA?

1College of Computer Science, ChongChing University, China
2National Institute of Information and Communications Technology, Japan
3Osaka University, Japan
4The University of Hyogo, Japan
SKobe University, Japan
5Delft University of Technology, the Netherlands
"The University of Tokyo, Japan
8Nanophotonics Engineering Organization, Japan
9Graduate School of Information Science and Technology,
Hokkaido University, Japan
10Department of Electrical and Computer Engineering,
Texas A& M University, College Sation, USA.

Received: May 2, 2016. Accepted: May 26, 2016.

The ongoing miniaturization of electronic circuits will eventually lead
to signals consisting of only a few particles or molecules, but fluctu-
ations will be a major interference in the operation of such circuits.
Brownian circuits have been shown to exploit fluctuations by finding
computational paths in circuits through a random search mechanism.
This paper discusses Brownian circuits with decreased complexity, and
shows designs of circuits with functionalities like counting, testing of
conditional statements, memory, and arbitration of shared resources. We
also discuss the potential of Brownian circuits for implementations by
Single Electron Tunneling technology.

Keywords: Fluctuation-driven computation, Brownian motion, circuit designs,
nanocomputing

1 INTRODUCTION

Brownian circuits employ fluctuating tokens as signals to search randomly
for computational paths in the state space defined by the circuit topology.

* Contact author: E-mail: peper@nict.go.jp

341

342 JIA LEE et al.

Fluctuations are not just a nuisance factor in such circuits, rather they are
actively exploited in assisting circuit operations. Brownian circuits provide
an alternative to more conventional strategies to deal with noise, which usu-
ally amounts to suppressing noise or employing error correction. While such
methods work when signal levels are well above noise by a large factor, they
fall short in a regime near the thermal limit [15], where the energy to operate a
switch barely exceeds that of thermal noise. This issue has become more seri-
ous with the increased integration densities of microelectronics, which will
eventually lead to circuits employing signals that consist of only a small num-
ber of particles. Fluctuations in such circuits will be difficult to avoid [18].

One of the first proposals to use Brownian motion of signals in computa-
tion originates with Bennett [4]. It takes the form of a miniature mechanical
Turing machine, in which signals move around randomly, driven by ther-
mal noise, and searching their way through the machine’s circuit topology.
Later proposals have employed fluctuations with the eye of making a trade-
off between energy use and reliability [8, 19], but these approaches tend to
require extensive error correction, and may thus fall in the realm of more-or-
less traditional methods. Noise and fluctuations have also been used in the
simulated annealing process of a Boltzmann machine [26]. Based on Single
Electron Tunneling devices, this architecture has been shown by computer
simulations to be able to exploit signal fluctuations to search in an energy
landscape. This proposal revolves around a neural network that conducts opti-
mization, but it is not suitable for arithmetic computation.

In biological systems, noise and fluctuations play an important role in
facilitating transitions between energy states that are separated by a high
energy barrier. Whereas designers of engineered systems usually aim to
achieve high S/N ratios, biological systems differ in that they have evolved to
take advantage of noise and fluctuations, allowing high energy efficiencies,
like in rotary protein motors, which work at efficiencies close to 100 per-
cent [7]. Fluctuations are also used in a biological system to exert effective
control on molecular scales through a trial-and-error mechanism that employs
stochastic search to make the system converge to a desirable state. This phe-
nomenon is called Brownian search.

Brownian circuits use a similar mechanism to conduct their operations in
a controlled way. This is formalized in [23] through the definition of a circuit
element—the T-element—that has been proven to be universal for a class of
circuits called Token-Pass circuits, under the necessary and sufficient condi-
tion that tokens undergo fluctuations. Key to the power of token fluctuations
is their ability to backtrack out of deadlocks, which are a common problem in
token-based circuits [23]. Token-Pass circuits, along with the T-element, form
a suitable framework to formally prove the capability of fluctuations, but they
have a somewhat rigid structure, being basically a set of lines that can interact

BROWNIAN CIRCUITS: DESIGNS 343

with each other at certain locations in very restricted ways. This poses the
question whether more efficient—in terms of hardware and time resources—
constructions are possible if more flexibility is allowed in the definition of
circuits.

The pay-off of such simplified constructions lies in the potential for effi-
cient designs in physical implementations. The omnipresence of fluctuations
at nanometer scales, combined with the trend in microelectronics of signals
consisting of less and less particles, underlines the importance of the formu-
lation of such abstract circuit models.

This paper describes circuits that are based on elements that are less com-
plex than the T-element, yet can be used as primitives of a universal class of
Brownian circuits. Called Hub, Conservative Join (CJoin), and Ratchet (see
Section 2), these elements have three, four, and two input and output lines,
respectively, which is less than the six lines of the T-element [23]. Token
fluctuations are fundamental to operations of circuits based on the Hub, the
CJoin, and the Ratchet, but compared to the Brownian circuits in [23], circuits
tend to become more straightforward in their designs. We introduce designs
of some standard circuits, such as a 1-bit memory cell and a Half-Adder (Sec-
tion 3), and an arbitration operator for shared resources (Section 4), and com-
bine these into more complex functionalities (Section 5). We also discuss six
conditions that are important for the realization of Brownian circuits in terms
of physical implementations (Section 6). This is followed by a brief review
of Single Electron Tunneling technology designs based on Brownian circuits
(Section 7). The discreteness of single electrons, as well as the stochastic
nature of electron tunneling, both fit well in the framework of Brownian cir-
cuits. Other technologies based on different mechanisms [16], however, may
also be suitable for physical implementations, provided they employ signals
that have a discrete character and the tendency to undergo fluctuations. This
paper finishes with conclusions and a discussion in Section 8.

2 BROWNIAN CIRCUITS

A Brownian circuit is a token-based circuit, in which tokens are allowed to
fluctuate forwards and backwards on lines and across operators. Notwith-
standing their ability to fluctuate, tokens are bound by the transition rules
governing circuits. An operator that requires a particular combination of
inputs will not produce outputs unless that combination is available on the
operator’s input lines at a certain time instant. For every other combination
the tokens will remain fluctuating on the input lines, where they may again
serve as input to the operator at some future time. The use of fluctuations
has an important merit: it allows Brownian circuits to backtrack out of states

344 JIA LEE et al.

in which no forward computational path exists [23]. Deadlocks are the usual
term for such situations, and they are likely to arise in conventional (non-
Brownian) token-based circuits when a circuit element—or, module in our
terminology—requires at least two tokens as input. Absent the full number
of input tokens, the input to a module will stay pending, waiting for the
remaining input tokens to arrive, and when that does not happen, a dead-
lock results. The usual way out of a deadlock is to reroute pending tokens
to alternative locations in the circuit, where they can be processed without
deadlocks. Given that tokens can only move forward in conventional token-
based circuits, however, this requires additional pathways and additional con-
trol mechanisms, which increases the complexities of modules and inter-
module connection patterns. Brownian circuits do not require these additional
resources, since they use fluctuations to make tokens backtrack their way out
of deadlocks, and in the process reach other modules that can accept them.

The Brownian circuits in [23] are very useful for the formal analysis of
fluctuations in a computational framework, but they have some overhead in
terms of interconnection lines, making them less suitable for efficient imple-
mentations. This motivates the definition of a class of circuits facing less
restrictions, the so-called Conservative Delay-Insensitive (CDI) circuits [22].
Promising for their physical plausability, these circuits are robust to delays
of tokens, and they conserve tokens in operations, i.e., the number of input
tokens to a module equals the number of output tokens.

A universal set of primitive modules for CDI circuits consists of the Merge
and the 2 x 2-CJoin. Figure 1 shows these modules, together with their func-
tionalities, expressed in terms of Petri nets (see also [23]). The universality
of this set of primitive modules can be shown by constructing a so-called
n x m-CJoin from it according to the design in [22]. The n x m-CJoin is a
generalization of a 2 x 2-CJoin and it is possible to construct a Finite State
Machine (FSM) from it with n states and m inputs (e.g. see [11, 21]). Since
any logic circuit can be expressed in terms of an FSM, the universality of the
set consisting of the Merge and the 2 x 2-CJoin follows (see also [6]).

When CDI circuits have fluctuating tokens, they are Brownian. They can
be constructed from a set of three primitive modules. The first module is the
Hub, which has three lines that are bidirectional (Figure 2). There is at most
one token at a time on any of the Hub’s lines, and this token can move to any
of the lines due to its fluctuations.

The second module is the Conservative Join (CJoin), which has two input
lines and two output lines (Figure 3). The two tokens on its input lines (one
token on each line) pass through the CJoin in a pairwise manner, so the CJoin
in fact behaves like a synchronizer. Tokens may fluctuate on the input lines,
and when processed by the CJoin, they move to the output lines where they
may also fluctuate. The operation of the CJoin may also be reversed, and the

BROWNIAN CIRCUITS: DESIGNS 345

| O11 (OJP)
, 0,

2

021 02
O IZ] % %
O; 05

2

(© (d)

FIGURE 1

Primitive elements for Conservative Delay-Insensitive (CDI) circuits, and the corresponding
Petri nets. (a) Merge merges two streams of input tokens I; and I, into one output stream O.
(b) 2 x 2-CJoin joins two input tokens resulting in two output tokens as follows. Upon receiving
one token from line I; and one token from line Ij/ (i, j € {1, 2}), the module outputs one token to
each of the lines O;j and O/, . If there is only one token input to the module, it remains pending
until a second token is input to the module. (c) Petri net of the Merge, and (d) of the 2 x 2-CJoin.

W, Wy
>37 W, % A
W, W,
(a) (b)
FIGURE 2
(a) The Hub, with a token on one of its lines (W), denoted by a black blob. All lines are bidi-

rectional and are indicated without arrow heads. The token can be on any of the three lines Wy,
W, and W3, and it can fluctuate between the lines in any order. (b) Petri net of the Hub.

346 JIA LEE et al.

O o
_
l, —— |—e— 1, I I
—
0, o,
(a) (b)

FIGURE 3

(a) The CJoin, with one token on each of its two input lines |1 and I,. A transition moves the
tokens from the input lines to the two output lines O; and O, or in the reverse direction if
both tokens are on the output lines. If there is a token on only one input line (11 or I7), this
token remains pending (and fluctuating) until a token arrives on the other input line. All lines are
bidirectional and lack arrow heads, but since there is a bias from input to output, there are small
arrows to indicate the preferred direction of token flow. (b) Petri net of the CJoin.

——D—) —De— - —eo—p

(@) (b) (c)

FIGURE 4

Ratchet and its possible transition. (a) The token on the line may fluctuate before the Ratchet as
well as after the Ratchet, but (b) once it is at the right side of the Ratchet it cannot return. The
Ratchet thus imposes a direction on an (originally bidirectional) line. (c) The resulting unidirec-
tional line is denoted by an arrow.

forward / backward movement of the two tokens through it may be repeated
an unlimited number of times. Due to this bidirectionality, there is strictly
spoken no difference between input and output lines of the CJoin, though we
still use the terminology of input and output, since the direction of the process
is eventually biased forward. We call this the preferred direction of the CJoin
or of the associated lines.

The third module is the Ratchet, which allows a token to freely pass
through in one direction, but blocks it in the opposite direction (Figure 4).
Thus, a bidirectional line with a Ratchet on it effectively becomes unidi-
rectional. Ratchets can be used to limit the searching behavior of a circuit
at selected points, as a result of which the circuit is sped up. However, the
placement of Ratchets should be carefully considered to avoid the creation of
deadlocks at locations where Brownian search is required.

To show that the set consisting of the Hub, CJoin, and Ratchet is universal
for the class of CDI circuits, we construct a Merge and a 2 x 2-CJoin from

BROWNIAN CIRCUITS: DESIGNS 347

Wi

W,

FIGURE 5

The Merge constructed from a Hub and two Ratchets. The Ratchets are used to guarantee that
any token input to the Merge will always be output to line W3, and never to either of the input
lines Wy and W.

them. Since the Merge and the 2 x 2-CJoin have only unidirectional input
and output lines, Ratchets are used to mimic this characteristic. The Merge is
constructed from a Hub and two Ratchets, whereby two of the Hub’s bidirec-
tional lines are equipped with Ratchets to act as input lines for the Merge, and
the remaining bidirectional line of the Hub is used for output of the Merge
(Figure 5). The construction of the 2 x 2-CJoin requires four Hubs, four
ClJoins, and twelve Ratchets. The more general construction of the n x m-
ClJoin is given in Figure 6. Brownian search in this construction takes place
at the trees forming the input lines of the individual CJoin modules.

Universality of the set consisting of the Hub, CJoin, and Ratchet can also
be shown in a different way, i.e., by constructing a so-called Conservative
Tria (CTria) from these modules [12], but we employ the construction based
on the n x m-CJoin, because it results in more straightforward and efficient
designs.

3 CIRCUIT DESIGNS

The universality of the Hub, CJloin, and Ratchet set opens the way for
constructions of circuits like a Half-Adder and a 1-bit memory. The basic
idea behind these constructions is to use the CJoins in an n x m-CJoin as
minterms in a canonical form of a Boolean expression, and to use the Hubs
for summing the minterms into the desired results, following similar ideas as
in [23]. A Half-Adder, for example, is constructed from one 2 x 2-CJoin and
four Hubs (Figure 7). The inputs of the Half-Adder—represented by the 0-
line and the 1-line at the top and a similar pair of lines at the right according
to a dual-rail encoding scheme ([13], Chapter 7)—are fed to the four CJoins,

348 JIA LEE et al.

+> O O
C C - G
T > O O
q C - G
_D J A
T T T
€ m >

FIGURE 6

The n x m-CJoin constructed as an array of CJoin modules with n rows and m columns. Each
row contains—apart from CJoin modules—a total of m — 1 Hubs that allow a token to conduct
a Brownian search in the row of m CJoins. Similarly, each column contains n — 1 Hubs for
searching in the column of n CJoins. This gives a total of n((m — 1) + (n — 1)m = 2nm —n —m
Hubs. When one token is received from the input line at row i and one token from the input line
at column j, the tokens find their way through Brownian search to the CJoin in row i and column
j. After accepting these tokens, this CJoin produces one token at each of its two corresponding
output lines. Ratchets are placed at locations where Brownian search is not necessary, which in
this case is at the output sides of the CJoins. A total of 2mn + m + n Ratchets is used.

0 Input1
% f— 1
1
! Input
Carry ~O
le— 0
0 O 6.7

FIGURE 7
Half-Adder constructed from a 2 x 2-CJoin and four Hubs.

BROWNIAN CIRCUITS: DESIGNS 349

Compare with 111
]
%
i

|
- |
O
NI R L
3 ;F +
o N BN B N NN
E i A z v ¥
o *— < <
£ Half-Adder Half-Adder
o |
©

0 1 0 1
FIGURE 8

3-bit Conditional Counter. The 3-bit input received by the Counter is compared with the bit-
string ‘111’ in the top stage. Depending on the outcome of the comparison, the second stage
either redirects the input to the output (when the input equals ‘111”), or to the third stage to
increase it by one before being output. Due to the comparator in the first stage, there will never be
overflow in the third stage, so the carry bit 1 in the most-significant Half-Adder is not connected
to other modules.

and the resulting four min-terms are combined through the Hubs to produce
the Half-Adder’s sum at the bottom and the carry at the left.

Figure 8 combines three Half-Adders into a 3-bit Conditional Counter that
adds 1 to its input in an operation, provided the input is less than the maximal
value “111°. The first stage of this counter compares the input with the bit
string ‘111° and if the input equals this string, it is redirected toward the
output; otherwise it is increased by one by the Half-Adders in the bottom
stage before the results are output.

Another useful circuit is a 1-bit memory, which requires a 2 x 3-CJoin,
as shown in Figure 9(a). The construction principle is similar to that of the
Half-Adder, with minterms produced by the six CJoins in the 2 x 3-CJoin
being summed by six Hubs. This construction involves feedback connections
to store the memory state, and Ratchets are used to retain the state. A 1-bit
memory can also be constructed from two 2 x 2-CJoins, like in Figure 9(b).

350 JIA LEE et al.

P
=1 t] 1]
FH_O. % 8

Ay R, R /i

(a)

FIGURE 9

(a) One-bit memory constructed from a 2 x 3-CJoin and six Hubs. The state of the memory is
stored by one token residing on one of the input lines at the left, whereby a token on the lower
line (like in the figure) denotes the state 0 and a token on the upper line denotes the state 1. The
value 0 resp. 1 is written into the memory by putting a token on the line Wy resp. W;. After
the required value is written, a token is output to the corresponding acknowledge line Ag or A;.
Reading from the memory is done by inputing a token to line R, which results in a token output
to line Ry or line Ry, depending on the memory’s state. (b) One-bit memory constructed from
two 2 x 2-CJoins and seven Hubs. For technical reasons, the memory’s state is stored by two
tokens in parallel.

4 ARBITRATION

When there are parallel processes competing for a shared resource, the
assignment of that resource is accomplished through arbitration. The cir-
cuits in the previous section all work fine in the absence of arbitration, since

BROWNIAN CIRCUITS: DESIGNS 351

Co Co Co
I o, IO o, I, —> — 0,
. — — % 1,0 o LT L0,
C C, C
(€Y (b) (©)

FIGURE 10

(a) CSequencer facilitates arbitration of shared resources between parallel processes. An input
token on line I (resp. I2) together with an input token on line C; but without an input token on
line 1, (resp. 11) results in one output token on line O; (resp. O2) and one on line Cop. If there
are input tokens on both 17 and |, at the same time as well as an input token on C, , then only one
of the tokens on 17 and I, (possibly chosen arbitrarily) is taken together with the token on C;,
resulting in an output token on the corresponding O; or O, line and on line Co. The remaining
input token may be processed at a later time, when a new token is available on line C; . (b) Petri
net of the CSequencer. (c) CSequencer constructed from a 2 x 1-CJoin.

no resource sharing is needed. A module capable of arbitration behavior is
the Conservative Sequencer (CSequencer) in Figure 10(a), with functional-
ity as defined by the Petri-net in Figure 10(b). This module is basically a
2 x 1-CJoin (Figure 10(c)) in which simultaneous input tokens to the two
lines I, and I, are allowed, one of which passes to the corresponding output
line either Oy or O, respectively, if a token is input to line C,. This behavior
is a direct consequence of the searching process in the underlying Brownian
circuit. The fluctuations of the token input to C,; drive a search inside the
module to match it with a second token input from either line I; or line I5.
As long as the token from C,; fails to find a token to match with, no oper-
ations take place in the 2 x 1-CJoin, and the C, token continues its search.
This circuit is capable of arbitration as a result of the tokens being subject to
fluctuations. Absent those, the circuit may end up in a deadlock.

The CSequencer comes in various formats. The version that arbitrates n
processes is called the n-CSequencer. When n = 2, like above, the prefix is
left out. The n-CSequencer can be implemented by an n x 1-CJoin.

5 ARBITRATION-BASED CIRCUITS

When the Conditional Counter in Figure 8 is extended with memories to store
the counted value, we obtain a circuit like in Figure 11. This circuit, which
we call Counting Memory, includes functionality to count up or down by one,
or read out the memory value. An attempt to conduct these operations at the

352 JIA LEE et al.

Request Arbitration
“”q’”l"”{ 77777 L N ‘—’E]‘i -

Wol IR lw1 [

v

Memory
(bit 2) Memory

Ao’ Ro[|R1 JA1 (bit1) Memory
L > A0’ Ro Ri A (bit 0)

S E
g
i |

FIGURE 11

Counting Memory storing three bits, the value of which can be read out, or, alternatively, be
increased by one up to a maximum of ‘111” or decreased by one down to a minimum of ‘000°.
A token input to the Read line at the top left results in the memory’s value being output to the
pairs of 0- or 1-lines of bits 0, 1, and 2 at the center left. This operation requires one token to be
input for each bit to ensure that the number of tokens is conserved (lowest line of each bit). A
token input to the Count-Up line resp. Count-Down line results in the Counting Memory’s value
being increased resp. decreased by one. All three operations generate an acknowledge-token at
the lower left.

BROWNIAN CIRCUITS: DESIGNS 353

same time in a non-arbitrating circuit would would give unpredictable results,
but this is prevented by arbitrating simultaneous calls to the circuit through a
3-CSequencer (top left), which is implemented as a 3 x 1-CJoin.

The Counting Memory output is given in dual-rail encoded form through
three pairs of 0- and 1-lines (bits 0, 1, and 2 at the center left of Figure 11).
As a result of a reading operation, tokens are output to these lines so that
they reflect the values stored in the 1-bit memories at the top of the figure.
Since the circuit conserves tokens, any number of tokens it outputs should be
compensated by input of the same number of tokens. This is the reason why
each of the output bits has a single token accompanying it on the line below
the bit’s two output lines. These input tokens are absorbed by the circuit when
a Read signal passes the arbitrator at the top left.

Increasing or decreasing the number stored in the memory is accom-
plished through the 3-bit Conditional Counter just below the center. While an
increase in value is straightforward, a decrease is done by first redirecting the
number’s bits via the three modules directly above the Conditional Counter.
These modules include functionality to convert the number represented by
the bits into its negative equivalent in two’s complement representation. This
is followed by an operation of the Conditional Counter to increase the num-
ber by one, and then convert the result back by the three Redirect modules at
the bottom. No output signals are generated by a counting operation, except
for a token at an output line at the bottom left in the figure to acknowledge
the end of the operation. Such an acknowledge signal is also generated at the
end of a reading operation.

Figure 12 shows a circuit that calls the Counting Memory from three par-
allel threads. Though the Counting Memory in itself is able to arbitrate Read,
Count-Up, and Count-Down calls, the three threads may coincidentally call
one and the same operation at the same time, which may give undesirable
results. Thread 1 and thread 3, for example, both have calls to read out the
value of the Counting Memory, but only one such call can be handled at a
time, requiring an additional level of arbitration. The modules at the bottom
center of Figure 12 provide this arbitration functionality. For each type of
operation—Read, Count-Up, or Count-Down—it allows only one call to be
made at a time. Any other calls are delayed until the Counting Memory is
available again.

The Read operation is the most complex since it requires input and output
tokens of the bits to be routed from and to the thread that made the Read call.
The part of the circuit in Figure 12 located just left of the Counting Memory
is responsible for this. It collects a Read operation’s tokens from threads,
and decides from which thread it redirects tokens to the Counting Memory
in accordance with the decision of the arbitration part at the bottom of the

354 JIA LEE et al.

Read

Thread 1 ! Count Up

' Count Down

t —3 Routing !

I
Read 3
I
]

3 e
Count Down {‘ é}r#

[ivessa] T i

Count Up { +— o

‘° peik

Count Down {

Counting Memory (3 bits)

I
Count Down | ’7 e —
§ = \
| ‘ ‘T ¥ il
Thread 3]
<=
Read —
|
I
Count Down
Count Up { Count Up
| Read
I
I
Count Down Count Up Read
Arbitration Arbitration Arbitration
FIGURE 12

Arbitration of calls by three parallel threads to a 3-bit Counting Memory. Each thread is executed
from top to bottom and when a call to the Counting Memory is made, the correponding tokens are
submitted to the Counting Memory, but not before they pass arbitration circuitry at the bottom
center. The part of the circuitry located just left of the Counting Memory is an extension of this
arbitration circuitry, and it takes care for routing bits associated with the Read operation between
the Counting Memory and the thread requesting the operation.

figure. Similarly, the output bits of the Read operation are routed back to the
corresponding thread that made the call.

The lines in Figures 11 and 12 are all unidirectional, which allows Ratch-
ets to be placed on them. The presence of Ratchets on these lines causes no
problem, since no Brownian search needs to take place on them. All Brown-
ian searching behavior is restricted to a local level within n x m-CJoin mod-
ules. Ratchets placed outside these modules do not affect the Brownian search
process inside modules. Consequently, the only penalties in time complexity
likely to be incurred are those due to Brownian searching within n x m-CJoin
modules, but since the dimensions of these modules are small in our case, this
overhead is limited.

Sections 3 to 5 have presented designs of elementary circuits, like coun-
ters and memories, as well as examples combining these circuits into more

BROWNIAN CIRCUITS: DESIGNS 355

complex circuits. In principle, circuits for every computable function can be
constructed, since the basis set, consisting of the Hub, the CJoin, and the
Ratchet, is universal for the class of CDI circuits. Arbitration in circuits is
facilitated by Brownian search in the underlying Brownian circuits.

6 REALIZATIONS OF BROWNIAN CIRCUITS

For Brownian circuits to be realized by a technology or a model certain con-
ditions must be met. This section discusses such conditions for circuits based
on the Hub, CJoin, and Ratchet.

Token-Based Condition. Signals are represented as tokens: it is impossible
to divide a signal into more signals, or to fuse multiple signals into one signal
when on a line, i.e. outside a module. In practice this condition implies that
signals behave like particles.

Line-Search Condition. A signal is able to explore the state space of a line
by Brownian search based on fluctuations.

Hub-Search Condition. A signal is able to explore the state space of a Hub
by Brownian search based on fluctuations. This condition is similar to the
Line-Search condition, but then extended to three lines coming together in
the Hub.

CJoin-Pair Condition. Two signals input to the CJoin (at two different
lines), pass through the CJoin in a pairwise manner. If the two signals go
back through the CJoin they do so in a pairwise manner too. This condition
does not require signals to pass through the CJoin at the same time: it just
means that when one signal passes through the CJoin, the other will also
pass. Figure 13 shows a sequence of events in which signals pass pairwise,
but not simultaneously.

In this case the CJoin has six states that are assumed in certain orders to
ensure that the correct sequences from input to output are followed. After
both signals have passed, the CJoin’s state reverts to the initial state S, i.e.,
to the state before the signals were input. If the CJoin passes its two signals
simultaneously, only one state is required.

Modularity Condition. The functionalities of the circuit elements (Hub,
CJoin, or Ratchet) do not change when they are connected to each other. In
other words, there should be no interference on the behavior inside a module
from processes at the outside.

Ratchet Condition. Ratchets are to be placed at positions where no Brown-
ian search is required. Feasible positions to place Ratchets are at output sides

356 JIA LEE et al.

(a) (b) (©) (d) (e)

FIGURE 13

Sequences of states assumed by a CJoin when two signals are passed through it pairwise but not
necessarily simultaneously. Transitions may take place both forward or in reverse. (a) CJoin is
initially in state &, which indicates that no signals are being processed. The presence or absence
of signals on the input and output lines is irrelevant to the state here. (b) Depending on which
input signal is absorbed first, the CJoin will assume the state S5 or Sp. (c) After both input
signals are accepted by the CJoin, the state S is assumed. (d) Depending on which signal is
output first, the CJoin will assume the state S35 or Sgp. (€) After outputing both signals, the
Cloin returns to its initial state &.

of CJoins. This tends to block signals from going backwards through CJoins,
making their functionality forward-only. For the designs in this paper this
does not impede the Brownian search process. In a search tree constructed
from Hubs, Ratchets are usually placed at the root of the search tree to con-
fine tokens to a minimal search space, like in the n x m-CJoin in Figure 6.

7 SINGLE ELECTRON TUNNELING CIRCUITS

Single Electron Tunneling (SET) circuits use tunneling of electrons as the
underlying operating mechanism. The fundamental element in a SET circuit
is a tunneling junction, which is an thin layer with high electrical resistance
separating two Coulomb islands. Tunneling through a junction becomes pos-
sible when the voltage V; over the junction exceeds a critical voltage V; that
depends on the capacitance of the junction and of the remainder of the circuit.
Tunneling is a stochastic phenomenon: the transport of an electron over the
junction experiences a delay of

4= - IOQ Perr Rj Qe
|Vj | - Vc ’

where R; is the junction resistance and P is the probability that no transport
has occurred after tq seconds. Though tunneling is extremely fast (in the order

BROWNIAN CIRCUITS: DESIGNS 357

of picoseconds), it is unpredictable, making it less suitable for synchronously
timed architectures. For this reason, research has been initiated on how SET
could be used in the framework of token-based delay-insensitive circuits [24].
SET technology is especially suited to the token-based nature of such circuits,
with tokens representing electrons or vacancies of electrons.

Can Brownian circuits be implemented with SET technology? We will
first examine the assumptions made in more conventional SET circuits,
before addressing their potential to implement Brownian circuits. In order to
be used as tokens in Brownian circuits, electrons need to have a token-based
character, but their wave-particle duality implies that this only holds under
certain conditions. An electron’s wave function extends through a potential
barrier, thus spreading the electron over the Coulomb islands at both sides of
the barrier. If this effect was to prevail there would be no localized charges
of electrons, rendering token-based computations impossible. The quantized
nature of an electron can be made more prominent by making the tunneling
resistance sufficiently high. This ensures that the charging energy dominates
over the quantum charge fluctuations. In other words:

Ge*
2.-C;j

R - Cj > h = Rj > h/ge® = 25.8kQ

where h is Planck’s constant, C; is the tunnel capacitance and R; is the tun-
neling resistance. The resistance of tunneling junctions in designs is usually
chosen as 100kS2 [2,5,9, 10, 14]. The token-based nature is fundamental to
Brownian circuits, so the above requirement is important for them.

Another requirement for SET circuits concerns the thermal energy. If the
thermal energy dominates over the charging energy Eg, tunneling is very
likely to take place spontaneously, rather than controlled. The condition to
avoid this is E. = % > kg - T, where kg is Boltzmann’s constant and T is
the absolute temperature. For a temperature of 1K, for example, this equation
implies that the capacitance of a Coulomb island should not exceed 926aF.
For higher temperatures, this capacitance is lower, which imposes a strict
upper bound to the size of a quantum dot: For room temperature the capaci-
tance should be less than 1aF, which corresponds to an approximate diameter
of Inm in silicon. In the context of Brownian circuits, the above limitation
is less strict, since spontaneous tunneling behavior has the potential to be
employed for Brownian search. Implementations of SET circuits in terms
of Brownian circuits may thus allow higher operating temperatures or larger
feature sizes.

A preliminary study on implementations of Brownian circuits by SET
technology has been conducted in [1,25] (see Figures 14 and 15). This study
focuses on a design of the Hub, as well as of a CJoin that is one-way, i.e., that

358 JIA LEE et al.

T

Cq
n1

E==3J3 =3J5

Cs3 Vs Cs3 Vs
—iFo ko
Ja J6
n2 n3
Cqg Cqg

FIGURE 14

SET circuit of the Hub based on the design in [25]. The three wire terminals of the Hub are
modeled by the Coulomb islands n1, n2, and n3. When there is an electron vacancy on nj, an
electron is supplied from either ny or n3 via junctions J; and J3, or Js and Js. Capacitance Cs3
is chosen to be sufficiently low such that the thermal energy of the electron allows it to tunnel
between n; and ny, or between n; and nz in a random fashion.

cannot reverse its tokens once they have been output. Though the CJoin in
this study is different from the (two-way) CJoin in Figure 3, it can be consid-
ered as having ratchets attached to its output lines. Strictly spoken, the CJoin
does not need Brownian search at its output sides (see Ratchet Condition in
Section 6). Therefore, incorporating ratchets in a CJoin does not compromise
the correctness of circuit designs. The one-way CJoin in combination with the
Hub can thus be used as the basis of a universal set of primitives. The one-way
design of the CJoin implies that fluctuations do not play an active role in its
operation, unlike in the design of the Hub. The Hub and the CJoin thus work
under somewhat different (but compatible) regimes of circuit parameters, the
parameter settings of the Hub facilitating Brownian search, and the settings
of the CJoin being more in line with deterministic behavior. Fluctuations in
the Hub arise when the voltages over its tunneling junctions are brought close
enough to their critical voltages such that electrons will tunnel forward and
backwards through the junctions due to thermal energy. The thermal energy
is thus effectively used as a random control voltage. The CJoin on the other
hand is designed with buffering techniques in mind [10], such that the ther-
mal energy has little or no effect on its behavior. In [1] a Half-Adder based
on these SET-designs is simulated, confirming its correct behavior.

BROWNIAN CIRCUITS: DESIGNS 359

Fovs VsO—|

s Cb

C
Vo] —iFov
) J9 =06
CT Clr;1 C|:n|1 Cq1
_|:| n1 H M n3 jl
J10
n5
J11
Cs2
J3 " J7
=3 J12 =3
Cr;2 (|3n2
n6 I
J8

My
ﬁﬁ ! Tﬁfl

n2 Cn3 Cn3 n4
J14
FIGURE 15

SET circuit of the CJoin [1]. Signals are input to the terminals V4 and Vj, and the output terminals
are modeled by the Coulomb islands n2 and n4. When input V; (resp. Vp) goes high, an electron
will tunnel through J; and J; (resp. Js and Js), resulting in a positive charge on ny (resp. n3).
When both V5 and Vj, are high and thus n; and n3 containing a positive charge, an electron will
tunnel from ns through Jip and Jg to the source Vs. This triggers the tunneling of an electron
from ng to ns. The resulting positive charge at ng will cause tunneling of an electron from n; to
n; through J; and J; and an electron from n4 to n3 through Jg and J;. The resulting positive
charges at n, and ns will then cause the charge in ng to flow to ground after an electron tunnels
through Ji4 and Ji3. This restores the circuit to its initial state.

8 CONCLUSIONSAND DISCUSSION

The trend towards nanocircuits that are switched by ever-decreasing numbers
of particles will eventually lead to a regime where the law of large num-
bers ceases to hold. Fluctuations of signals will play a major role, requir-
ing new ways to deal with the inherent decrease in reliability. Brownian cir-
cuits offer a new perspective in this context: they actively exploit fluctua-
tions by searching through the state space of a circuit. This strategy allows
decreased complexity of circuit primitives and circuit topologies, because it
obviates the use of added circuitry to avoid the deadlocks common in conven-
tional token-based circuits. The Brownian circuits in this paper are based on
three primitives—the Hub, CJoin, and Ratchet—that are less complex than
the primitives in [23], and that allow more straightforward circuit designs.

360 JIA LEE et al.

Simplicity of primitives and circuits are important factors contributing to the
efficiency by which the circuits can be implemented physically.

Though Brownian circuits depend on fluctuations in their operation, they
also need to restrict fluctuations to bias Brownian search away from direc-
tions not leading to output states. This is accomplished through the controlled
use of Ratchets, which are placed so that they do not interfere with Brownian
search, while also speeding up computations. When placed at the very begin-
ning of the input lines of a circuit, Ratchets will lock in the input tokens, thus
preventing the tokens from backing out from the circuit through the input
lines. In general, Ratchets are placed so that they limit the Brownian search
space to the bare minimum, yet do not block Brownian search where it is
needed. At locations where Brownian search is indispensable Ratchets are
left out. In [23] it is pointed out that the expected time for a token with unbi-
ased fluctuations to move from one end of a line with length L to the other end
scales with L2. When Ratchets are placed at constant distances D from each
other, the token will be sped up by a factor of L /D on that line. Placement of
Ratchets on output lines of circuits allows us to fix output of a circuit, so that
signals cannot reenter it. Ratchets thus serve as buffers that isolate output of
a circuit from the random fluctuations inside the circuit.

Single Electron Tunneling (SET) circuits, discussed in Section 7, are
promising candidates for implementing Brownian circuits, because of the
discreteness of their signals, which are represented as individual electrons,
and because of the stochastic nature of tunneling, which fits well with the
asynchronous nature of Brownian circuits. Discreteness in SET circuits man-
ifests itself not only in the physical representation of a signal, but also in
the position of a signal when it is physically represented by electrons held in
Quantum dots. Quantum dots can be implemented in silicon [17], but molec-
ular implementations are also possible, like in [20], where a single Co-ion
bonded to a polypyridyl ligand behaves like a Coulomb island. In [3] tokens
are represented by electrons in the bonds of molecules that are organized on
a discrete grid.

Brownian circuits, unconventional as they may be, are no different from
traditional circuits with respect to the range of functionalities they can real-
ize. The logic design style for the Brownian circuits in this paper is based
on Canonical Disjunctive Normal Forms, with CJoins encoding minterms
and Hubs summing them. This implies that the complexity of designs is of
the same order as in traditional logic, apart from a constant factor. There
are differences too: whereas traditional electronic circuits employ voltage-
encoded signals, Brownian circuits use tokens and they work without a clock.
Due to this different framework, Brownian circuits need dual-rail encoding
to represent logical values of signals, which requires a larger number of lines.
Avrbitration, on the other hand, is implemented more efficiently in Brownian

BROWNIAN CIRCUITS: DESIGNS 361

circuits, since it is inherent in the stochastic nature of Brownian search. Since
Brownian circuits have the potential for implementations at integration den-
sities exceeding conventional technology, the area required to implement a
circuit may be significantly decreased, even when taking into account the
overhead of dual-rail encoded lines.

Physical implementations of Brownian circuits are within the realm of
possibilities, as simulations of designs based on Single Electron Tunneling
technologies confirm. Other technologies may also be suitable for imple-
mentations, like spintronics, in which information is encoded by the spins
of electrons. Though spintronics devices are less sensitive to quantum fluctu-
ations as compared to SET, they are still subject to thermal fluctuations [18].
Another candidate is nanophotonics [16], where a token would represent an
exciton—a quasi-particle consisting of an electron and electron hole, which
results from the absorption of a photon in a semiconductor. In general, for
a technology to be suitable for implementations of Brownian circuits, it is
necessary that it supports a representation of signals that is token-based and
that are subject to fluctuations.

REFERENCES

[1] 1. Agbo, S. Safiruddin, and S.D. Cotofana. (2009). Implementable building blocks for fluc-
tuation based calculation in single electron tunneling technology. In Proc. 9th |EEE Int.
Conf. on Nanotechnology (IEEE NANO), pages 450-453.

[2] N. Asahi, M. Akazawa, and Y. Amemiya. (January 1998). Single-electron logic systems
based on the binary decision diagram. |EICE Transactions on Electronics, E81-C(1):49-
56.

[3] A. Bandyopadhyay, R. Pati, S. Sahu, F. Peper, and D. Fujita. (April 2010). Massively par-
allel computing on an organic molecular layer. Nature Physics, 6(5):369-375.

[4] C.H. Bennett. (1982). The thermodynamics of computation—a review. International Jour-
nal of Theoretical Physics, 21(12):905-940.

[5] S. Cotofana, C. Lageweg, and S. Vassiliadis. (March 2005). Addition related arithmetic
operations via controlled transport of charge. | EEE Transactions of Computers, 54(3):243—
256.

[6] R.M. Keller. (1974). Towards a theory of universal speed-independent modules. |EEE
Trans. Comput., C-23(1):21—33.

[7] K. Kinosita, R. Yasuda, H. Noji, and K. Adachi. (April 2000). A rotary molecular motor
that can work at near 100% efficiency. Philosophical Transactions of the Royal Society of
London, 355(1396):473-489.

[8] L.B. Kish. (2006). Thermal noise driven computing. Applied Physics Letters,
89(14):144104-1-3.

[9] C. Lageweg, S. Cotofana, and S. Vassiliadis. (2001). A linear threshold gate implemen-
tation in single electron technology. In WVLS '01: Proceedings of the IEEE Computer
Society Workshop on VLS 2001, pages 93-98, Washington, DC, USA. IEEE Computer
Society.

362

[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

JIA LEE et al.

C. Lageweg, S. Cotofana, and S. Vassiliadis. (2002). Static buffered set based logic gates.
In Proceedings of the 2nd IEEE International Conference on Nanotechnology (IEEE
Nano), pages 491-494, Arlington, USA.

J. Lee, S. Adachi, and F. Peper. (2011). A partitioned cellular automaton approach for
efficient implementation of asynchronous circuits. The Computer Journal, 54(7):1211—
1220.

J. Lee and F. Peper. (2008). On brownian cellular automata. In Proc. of Automata 2008,
pages 278-291, UK. Luniver Press.

C. Mead and L. Conway. (1980). Introduction to VLS Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

C. Meenderinck and S. Cotofana. (July 2007). Computing Division Using Single-Electron
Tunneling Technology. | EEE Transactions on Nanotechnology, 6(4):451-457.

J.D. Meindl, Q. Chen, and J.A. Davis. (2001). Limits on Silicon Nanoelectronics for Teras-
cale Integration. Science, 293(5537):2044-2049.

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse. (2008). Principles of
Nanophotonics. Taylor & Francis.

Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, and K. Murase.
(2000). Fabrication method for IC-oriented Si single-electron transistors. |[EEE Trans.
Electron Devices, 47(1):147-153.

I.V. Ovchinnikov and K.L. Wang. (2008). Variability of electronics and spintronics
nanoscale devices. Applied Physics Letters, 92(9):093503-1-3.

K.V. Palem. (2005). Energy aware computing through probabilistic switching: a study of
limits. |EEE Trans. Computers, 54(9):1123-1137.

J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P.
Sethna, H.D. Abrufia, P.L. McEuen, and D.C. Ralph. (2002). Coulomb blockade and the
Kondo effect in single-atom transistors. Nature, 417(6890):722—725.

P. Patra and D.S. Fussell. (1994). Efficient building blocks for delay insensitive circuits.
In Proceedings of the International Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC), pages 196-205.

P. Patra and D.S. Fussell. (1996). Conservative delay-insensitive circuits. In Workshop on
Physics and Computation, pages 248-259.

F. Peper, J. Lee, J. Carmona, J. Cortadella, and K. Morita. (2013). Brownian circuits: Fun-
damentals. ACM Journal on Emerging Technologies in Computing Systems, 9(1):3:1-24.

S. Safiruddin and S.D. Cotofana. (2007). Building blocks for delay-insensitive circuits
using single electron tunneling devices. In Proc. 7th |EEE Int. Conf. on Nanotechnology
(IEEE NANO), pages 704-708.

S. Safiruddin, S.D. Cotofana, F. Peper, and J. Lee. (2008). Building blocks for fluctuation
based calculation in single electron tunneling technology. In Proc. 8th IEEE Int. Conf. on
Nanotechnology (IEEE NANO), pages 358-361.

T. Yamada, M. Akazawa, T. Asai, and Y. Amemiya. (2001). Boltzmann machine neural
network devices using single-electron tunnelling. Nanotechnology, 12(1):60-67.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aharoni-Bold
 /Aldhabi
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /ARBERKLEY
 /ARBLANCA
 /ARBONNIE
 /ARCARTER
 /ARCENA
 /ARCHRISTY
 /ARDARLING
 /ARDECODE
 /ARDELANEY
 /ARDESTINE
 /ARESSENCE
 /ARHERMANN
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ARJULIAN
 /Batang
 /BatangChe
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /ComicSansMS-BoldItalic
 /ComicSansMS-Italic
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /Gabriola
 /Gadugi
 /Gadugi-Bold
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gisha
 /Gisha-Bold
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Impact
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /Leelawadee
 /LeelawadeeBold
 /Leelawadee-Bold
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaConsole
 /LucidaSansUnicode
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftJhengHeiUIBold
 /MicrosoftJhengHeiUIRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftUighur-Bold
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /MicrosoftYaHeiUI
 /MicrosoftYaHeiUI-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /Miriam
 /MiriamFixed
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MS-UIGothic
 /MVBoli
 /MyanmarText
 /Narkisim
 /NirmalaUI
 /NirmalaUI-Bold
 /NSimSun
 /Nyala-Regular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PlantagenetCherokee
 /PMingLiU
 /PMingLiU-ExtB
 /Raavi
 /Raavi-Bold
 /Rod
 /SakkalMajalla
 /SakkalMajallaBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-LightItalic
 /SegoeUI-Semibold
 /SegoeUI-SemiboldItalic
 /SegoeUI-Semilight
 /SegoeUI-SemilightItalic
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /TraditionalArabic
 /TraditionalArabic-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /UrduTypesetting
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [432.000 648.000]
>> setpagedevice

