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The Fuzzy Analytic Network Process (ANP) is generally used for
solving multi- criteria decision making (MCDM) problems by con-
sidering the pairwise comparison between criteria/sub-criteria, and
inner/outer dependencies among criteria. Linguistic expressions are
used for experts’ judgements, and these judgements are imprecise and
vague. Hence, incorporating fuzziness with multi-criteria decision mak-
ing techniques is as advanced approach as fuzzy AHP/ANP. Addition-
ally, type-2 fuzzy sets are modelled with vagueness considering the
fuzziness of a membership function. Although fuzzy AHP/ANP meth-
ods are widely used for MCDM problems, few studies are available in
the literature with type- 2 fuzzy AHP. Therefore, the type- 2 fuzzy ANP
method is first introduced in this paper with interval type-2 fuzzy sets.

The main goal of this paper was to develop a new approach for the
interval type-2 fuzzy ANP method for modelling MCDM problems by
integrating ANP and interval type-2 fuzzy sets. 3PL company selection
problems were modelled with an interval type-2 fuzzy ANP method
with BOCR main criteria.

Keywords: Type-2 fuzzy sets, fuzzy analytic network process, type-2 FANP.

1 INTRODUCTION

Many methods have been presented for handling fuzzy multiple attribute
decision problems. Laarhoven and Pedrycz [1] proposed a fuzzy logarithmic

∗ Corresponding author: E-mail: sdeligoz@anadolu.edu.tr

311



312 S. SENTURK et al.

least squares method to obtain fuzzy weights from triangular fuzzy compar-
ison matrices. Chang [2] suggested an extent analysis method. Buckley [3]
offered the geometric mean method to calculate fuzzy weights. Wang and
Hwang [4] introduced linear, non-linear, dynamic, goal, and stochastic math-
ematical programming for the Research and Development project selection.
Chen and Lee [5] used interval type-2 fuzzy sets to define linguistic variables
and proposed likelihood approaches.

The ANP method, which was developed by Saaty [6, 7], is one of the
multi-criteria decision making methods for complex models. Because there
are qualitative criteria, and interactions among the criteria as well as the
linguistic variables, fuzzy ANP which is a combination of ANP and Fuzzy
Logic methods was developed. Therefore, in the literature, fuzzy ANP meth-
ods are based on type-1 fuzzy sets. Fuzzy ANP has a many advantages over
classical ANP. Thus, fuzzy ANP is a more effective method for eliminating
uncertainty in opinions of decision makers’ and judgements from classical
ANP.

In type-1 fuzzy sets, uncertainties are handled with varying degrees of
membership between 0 and 1. If the value is assigned a value of 0, the ele-
ment does not belong to the fuzzy set. If the value is assigned as 1 the ele-
ment does belong to the fuzzy set. If the value is assigned as 0.5, the ele-
ment belongs 50 percent to fuzzy set. However, words mean different things
to different people, so there is uncertainty related to words, which means
that fuzzy logic must somehow use this uncertainty when it computes with
words. Type-1 fuzzy logic cannot do this, but type-2 fuzzy logic, as recently
defended by Karnik and Mendel [8, 9], and Mendel [10]. The concept of a
type-2 fuzzy set was presented by Zadeh [11] as an extension of the concept
of an ordinary fuzzy set called a type-1 fuzzy set. Type-1 fuzzy sets are two
dimensional, but type-2 fuzzy sets are there dimensional. When we cannot
determine the membership grade even as an exact number in [0,1] , we use
fuzzy sets of type-2. Dubois and Prade [12], Karnik and Mendel [8, 9], Kauf-
man and Gupta [13], Mizumoto and Tanaka [14, 15], Turksen [16], and Yager
[17] have contributed to the literature to develop type-2 fuzzy sets.

Interval type-2 fuzzy sets are a special condition of generalized type-2
fuzzy sets. Because of the computational complexity of using general type-2
fuzzy sets, most people use interval type-2 fuzzy sets as a type-2 fuzzy sets,
the result being an interval fuzzy sets. Therefore, we used interval type-2
fuzzy sets [18].

In this paper, an interval type-2 fuzzy ANP method was developed and
offered into the literature for the first time. Experts compare criteria according
to the linguistic scale fuzzy ANP as type-2 fuzzy trapezoidal numbers.

The rest of these paper is organized as follows. Section 2 presents the
basics of interval fuzzy sets. Arithmetic operations with trapezoidal interval
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type-2 fuzzy sets are given in Section 3. Section 4 presents type reduction for
type-2 fuzzy sets. Section 5 presents our proposed interval type-2 fuzzy ANP
method. Section 6 provides an application for solving the supplier selection
problem in Turkey. Finally Section 7 gives the conclusions.

2 INTERVAL TYPE-2 FUZZY SETS

In this section, interval type-2 fuzzy sets are first explained [19]. Second,
defuzzification methods are presented.

Definition 2.1. A type-2 fuzzy set ˜̃A is characterized by a type-2 membership
function, a type-2 membership function μ ˜̃A, shown as follows [5]:

˜̃A = {(x, u), μ ˜̃A(x, u)|∀x ∈ X, 0 ≤ μ ˜̃A(x, u) ≤ 1
}

(1)

where ∀u ∈ JX ⊆ [0, 1]. The type-2 fuzzy set ˜̃A is expressed as follows:

˜̃A =
∫

x∈X

∫
u∈Jx

μ ˜̃A(x, u)/(x, u) (2)

where x is the primary variable in the domain X; u is the secondary variable
in domain JX at each x ∈ X. JX is called the primary membership of x, and
the secondary membership grades of ˜̃A all equal to 1, JX ⊆ [0, 1] and

∫∫
denote union over all admissible x and u. For discrete universes of discourse,∫

is replaced by
∑

.

An interval type-2 fuzzy set ˜̃A is a special case of general type-2 fuzzy
sets where all of the secondary membership functions of ˜A are equal to 1. ˜̃A
is an interval type-2 fuzzy sets

˜̃A =
∫

x∈X

∫
u∈Jx

1/(x, u) (3)

where JX ⊆ [0, 1].
Uncertainty in the primary memberships of ˜̃A is defined as a footprint of

uncertainty (FOU). FOU defines the union of all primary memberships as
[19]:

F OU ( ˜̃A) =
⋃
x∈X

JX = {(x, u) : u ∈ JX ⊆ [0, 1]} (4)
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FIGURE 1
Example of an interval type-2 membership function for discrete universes of discourse [19]

The lower and upper bounds of FOU of ˜̃A are two type-1 membership func-
tions named the Lower Membership Function (LMF), μ ˜̃A(x), and the Upper
Membership Function (UMF), μ̄ ˜̃A(x), respectively.

μ̄ ˜̃A(x) = F OU ( ˜̃A),∀x ∈ X (5)

μ ˜̃A(x) = F OU ( ˜̃A),∀x ∈ X (6)

F OU ( ˜̃A) =
⋃
x∈X

[
μ ˜̃A(x), μ̄ ˜̃A(x)

]
(7)

3 ARITHMETIC OPERATIONS BETWEEN TRAPEZOIDAL
INTERVAL TYPE-2 FUZZY SETS

Arithmetic operations with trapezoidal interval type-2 fuzzy sets are given as
follows.

Definition 3.1. The upper membership function and lower membership func-
tion of an interval type-2 fuzzy set are type-1 membership functions, respec-
tively, a trapezoidal interval type-2 fuzzy set

Ãi = ( ÃU
i , ÃL

i

) =
( (

aU
i1, aU

i2, aU
i3, aU

i4; H1
(

ÃU
i

)
, H2

(
ÃU

i

))
(
aL

i1, aL
i2, aL

i3, aL
i4; H1

(
ÃL

i

)
, H2

(
ÃL

i

))
)
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FIGURE 2
The membership functions of the interval type-2 fuzzy set ˜̃A

where ÃU
i and ÃL

i are type 1 fuzzy sets, aU
i1, aU

i2, aU
i3, aU

i4, aL
i1, aL

i2, aL
i3, aL

i4

are the references points of the interval type-2 fuzzy ˜̃A; Hj ( ÃU
i ) denotes

the membership value of the element aU
i( j+1) in the upper trapezoidal mem-

bership function ÃU
i ; 1 ≤ j ≤ 2, Hj ( ÃL

i ) denotes the membership value of
the element aU

i( j+1) in the upper trapezoidal membership function ÃU
i ; and

1 ≤ j ≤ 2, Hj ( ÃU
i ), Hj ( ÃL

i ) ∈ [0, 1], 1 ≤ i ≤ n

Definition 3.2. The addition operation between two trapezoidal interval
type-2 fuzzy sets

Ã1 = ( ÃU
1 , ÃL

1

) =
⎛
⎝
(
aU

11, aU
12, aU

13, aU
14; H1

(
ÃU

1

)
, H2

(
ÃU

1

))
(
aL

11, aL
12, aL

13, aL
14; H1

(
ÃL

1

)
, H2

(
ÃL

1

))
⎞
⎠

Ã2 = ( ÃU
2 , AL

2

) =
⎛
⎝
(
aU

21, aU
22, aU

23, aU
24; H1

(
ÃU

2

)
, H2

(
ÃU

2

))
(
aL

21, aL
22, aL

23, aL
24; H1

(
ÃL

2

)
, H2

(
ÃL

2

))
⎞
⎠

is defined as follows [5, 20]:

˜̃A1 ⊕ ˜̃A2 = ( ÃU
1 , ÃL

1

)⊕ ( ÃU
2 , ÃL

2

) =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝aU

11 + aU
21, aU

12 + aU
22, aU

13 + aU
23, aU

14 + aU
24;

min
(
H1
(

ÃU
1

)
, H1

(
ÃU

2

))
min

(
H2
(

ÃU
1

)
, H2

(
ÃU

2

))
⎞
⎠ ,

⎛
⎝aL

11 + aL
21, aL

12 + aL
22, aL

13 + aL
23, aL

14 + aL
24;

min
(
H1
(

ÃL
1

)
, H1

(
ÃL

2

))
, min

(
H2
(

ÃL
1

)
, H2

(
ÃL

2

))
⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8)
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Definition 3.3. The subtraction operation between the trapezoidal interval
type-2 fuzzy sets

˜̃A1 = ( ÃU
1 , ÃL

1

) =
⎛
⎝
(
aU

11, aU
12, aU

13, aU
14; H1

(
ÃU

1

)
, H2

(
ÃU

1

))
,(

aL
11, aL

12, aL
13, aL

14; H1
(

ÃL
1

)
, H2

(
ÃL

1

))
⎞
⎠

˜̃A2 = ( ÃU
2 , ÃL

2

) =
⎛
⎝
(
aU

21, aU
22, aU

23, aU
24; H1

(
ÃU

2

)
, H2

(
ÃU

2

))
,(

aL
21, aL

22, aL
23, aL

24; H1
(

ÃL
2

)
, H2

(
ÃL

2

))
⎞
⎠

is defined as follows [5, 20]:

˜̃A1 � ˜̃A2 = ( ÃU
1 , ÃL

1

)� ( ÃU
2 , ÃL

2

) =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝aU

11 − aU
24, aU

12 − aU
23, aU

13 − aU
22, aU

14 − aU
21;

min
(
H1
(

ÃU
1

)
, H1

(
ÃU

2

))
, min

(
H2
(

ÃU
1

)
, H2

(
ÃU

2

))
⎞
⎠ ,

⎛
⎝aL

11 − aL
24, aL

12 − aL
23, aL

13 − aL
22, aL

14 − aL
21;

min
(
H1
(

ÃL
1

)
, H1

(
ÃL

2

))
, min

(
H2
(

ÃL
1

)
, H2

(
ÃL

2

))
⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9)

Definition 3.4. The multiplication operation between the trapezoidal inter-
val type-2 fuzzy sets

˜̃A1 = ( ÃU
1 , ÃL

1

) =
⎛
⎝
(
aU

11, aU
12, aU

13, aU
14; H1

(
ÃU

1

)
, H2

(
ÃU

1

))
,(

aL
11, aL

12, aL
13, aL

14; H1
(

ÃL
1

)
, H2

(
ÃL

1

))
⎞
⎠

˜̃A2 = ( ÃU
2 , ÃL

2

) =
⎛
⎝
(
aU

21, aU
22, aU

23, aU
24; H1

(
ÃU

2

)
, H2

(
ÃU

2

))
,(

aL
21, aL

22, aL
23, aL

24; H1
(

ÃL
2

)
, H2

(
ÃL

2

))
⎞
⎠

is defined as follows [5, 20]:

˜̃A1 ⊗ ˜̃A2 = ( ÃU
1 , ÃL

1

)⊗ ( ÃU
2 , ÃL

2

) =⎛
⎜⎜⎜⎜⎜⎝

(
aU

11 × aU
21, aU

12 × aU
22, aU

13 × aU
23, aU

14 × aU
24;

min
(
H1
(

ÃU
1

)
, H1

(
ÃU

2

))
min

(
H2
(

ÃU
1

)
, H2

(
ÃU

2

))
)

,

(
aL

11 × aL
21, aL

12 × aL
22, aL

13 × aL
23, aL

14 × aL
24;

min
(
H1
(

ÃL
1

)
, H1

(
ÃL

2

))
, min

(
H2
(

ÃL
1

)
, H2

(
ÃL

2

))
)

⎞
⎟⎟⎟⎟⎟⎠ (10)
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Definition 3.5. Some arithmetic operations between the trapezoidal interval
type-2 fuzzy set

˜̃A1 = ( ÃU
1 , ÃL

1

) =
⎛
⎝
(
aU

11, aU
12, aU

13, aU
14; H1

(
ÃU

1

)
, H2

(
ÃU

1

))
,(

aL
11, aL

12, aL
13, aL

14; H1
(

ÃL
1

)
, H2

(
ÃL

1

))
⎞
⎠

and the crisp value k are defined as follows [20]:

k × ˜̃A1 =
((

k × aU
11, k × aU

12, k × aU
13, k × aU

14; H1
(

ÃU
1

)
, H2

(
ÃU

1

))
,(

k × aL
11, k × aL

12, k × aL
13, k × aL

14; H1
(

ÃL
1

)
, H2

(
ÃL

1

))
)

(11)

˜̃A1

k
=
(( 1

k × aU
11,

1
k × aU

12,
1
k × aU

13,
1
k × aU

14; H1
(

ÃU
1

)
, H2

(
ÃU

1

))
,(

1
k × aL

11,
1
k × aL

12,
1
k × aL

13,
1
k × aL

14; H1
(

ÃL
1

)
, H2

(
ÃL

1

))
)

(12)

Definition 3.6. The ranking value Rank
(

˜̃Ai

)
of the trapezoidal interval

type-2 fuzzy set ˜̃Ai is defined as follows [5, 20]:

Rank
(

˜̃Ai

)
= M1

(
ÃU

i

)+ M1
(

ÃL
i

)+ M2
(

ÃU
i

)+ M2
(

ÃL
i

)+ M3
(

ÃU
i

)
+ M3

(
ÃL

i

)− 1

4

(
S1
(

ÃU
i

)+ S1
(

ÃL
i

)+ S2
(

ÃU
i

)+ S2
(

ÃL
i

))
− 1

4

(
S3
(

ÃU
i

)+ S3
(

ÃL
i

)+ S4
(

ÃU
i

)+ S4
(

ÃL
i

))+ H1
(

ÃU
i

)
+ H1

(
ÃL

i

)+ H2
(

ÃU
i

)+ H2
(

ÃL
i

)
(13)

where Mp( ˜̃A j
i ) denotes the average of the elements a j

ip and a j
i(p+1),

Mp

(
Ã j

i

)
=
(

a j
ip + a j

i(p+1)

)
/2, ≤ p ≤ 3 (14)

denotes the standard deviation of the elements a j
i1, a j

i2, a j
i3, a j

i4

Sq

(
Ã j

i

)
=

√√√√√1

2

q+1∑
k=q

⎛
⎝a j

ik − 1

2

q+1∑
k=q

a j
ik

⎞
⎠, 1 ≤ q ≤ 3 (15)
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S4

(
Ã j

i

)
denotes the standard deviation of the elements a j

i1, a j
i2, a j

i3, a j
i4

S4

(
Ã j

i

)
=

√√√√1

4

4∑
k=1

(
a j

ik − 1

4

4∑
k=1

a j
ik

)2

(16)

Hp( Ã j
i ) denotes the membership value of the element a j

i(p+1) in the trape-

zoidal membership function Ã j
i , 1 ≤ p ≤ 2, j ∈ {U, L} and 1 ≤ i ≤ n.

4 TYPE REDUCTION FOR TYPE-2 FUZZY SETS

The output of a type-1 fuzzy logic system is a type-1 fuzzy set. This set is well
known so there are many defuzzification methods to obtain crisp numbers. A
short time results because type-2 fuzzy logic systems have been developed,
and the output is a type-2 fuzzy set. A type reduction method in a type-2
fuzzy set is an important step. The aim of the type reduction process is to
convert an interval type-2 fuzzy set into a type-1 fuzzy set [21].

4.1 Centroid of a Type-2 Fuzzy Set
C ˜̃A is the centroid of an interval type-2 fuzzy set ˜̃A.

C ˜̃A = 1

[Cl , Cr ]
(17)

where Cl and Cr are the minimum and maximum points of centroid ˜̃A,
respectively. These numbers exist because the centroid of each of the embed-
ded type-1 fuzzy sets is a bounded number. Associated with each of these
numbers is a membership grade of 1, because the secondary grades of an
interval type-2 fuzzy sets are all equal to 1.

Cl = min(C ˜̃A) =

L∫
−∞

xμ̄ ˜̃A(x)dx +
∞∫
L

x
¯
μ ˜̃A(x)dx

L∫
−∞

μ̄ ˜̃A(x)dx +
∞∫
L ¯

μ ˜̃A(x)dx

(18)

Cr = max(C ˜̃A) =

R∫
−∞

x
¯
μ ˜̃A(x)dx +

∞∫
R

xμ̄ ˜̃A(x)dx

R∫
−∞ ¯

μ ˜̃A(x)dx +
∞∫
R

μ̄ ˜̃A(x)dx

(19)
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where L and R are the switch points that define the change from μ̄ ˜̃A(x) to

¯
μ ˜̃A(x) and

¯
μ ˜̃A(x) toμ̄ ˜̃A(x), respectively, and Cl = L and Cr = R. To calcu-

late (18) and (19), the L and R switch points must be known [8, 21, 22].

4.2 Type Reduction Indices Methods
For the type reduction of interval type-2 fuzzy sets, Niewiadomski et al. [23]
offered optimistic, pessimistic, realistic and weighted average indices:

TRopt( ˜̃A) = μ̄ ˜̃A(x), x ∈ X (20)

TRpes( ˜̃A) =
¯
μ ˜̃A(x), x ∈ X (21)

TRre( ˜̃A) = 0, 5∗(μ̄ ˜̃A(x) +
¯
μ ˜̃A(x)), x ∈ X (22)

TRwa( ˜̃A) = w1
¯
μ ˜̃A(x) + w2μ̄ ˜̃A(x), x ∈ X (23)

where w1 and w2 are the coefficients that satisfy w1 + w2 = 1

4.3 Modified Best Nonfuzzy Performance Methods
Kahraman et al. [24] offered a method for triangular and trapezoidal type-
2 fuzzy sets by modifying the Best Nonfuzzy Performance (BNP) value for
defuzzifying and ranking interval type-2 fuzzy sets. The proposed defuzzified
Triangular Type-2 Fuzzy Set (DTriT) approach follows:

DTriT =
(uU − lU ) + (mU − lU )

3
+ lU + α

[
(uL − lL ) + (mL − lL )

3
+ lL

]
2

(24)
where α is the maximum membership degree of the lower membership func-
tion of the type-2 fuzzy set considered; uU is the largest possible value of the
upper membership function. lU is the least possible value of the upper mem-
bership function. mU is the most possible value of the upper membership
function. uL is the largest possible value of the lower membership function.
lL is the least possible value of the lower membership function and mL is the
most possible value of the lower membership function.

DTraT =
(uU − lU ) + (βU

∗m1U − lU ) + (αU
∗m2U − lU )

4
+ lU

2

+

[
(uL − lL ) + (βL

∗m1L − lL ) + (αL
∗m2L − lL )

4
+ lL

]
2

(25)
where α and β are the maximum membership degrees of the lower member-
ship function of the type-2 fuzzy set considered; uU is the largest possible
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value of the upper membership function. lU is the least possible value of the
upper membership function. m1U and m2U are the second and third parame-
ters of the upper membership function. uL is the largest possible value of the
lower membership function. lL is the least possible value of the lower mem-
bership function and m1L and m2L are the second and third parameters of the
lower membership function.

5 THE PROPOSED METHOD FOR TYPE-2 FUZZY ANP

In this section, we proposed an interval type-2 fuzzy ANP method for mod-
elling vagueness originating from both the linguistic variables of experts and
membership functions as follows:

5.1 Type-1 Fuzzy ANP
Decision makers use verbal expressions to compare criteria in pairwise com-
parisons. Experts prefer to express with verbally of their views on a topic and
this will be more accurate than the use of exact number. Because there are
qualitative criteria, interactions among the criteria and linguistic variables,
fuzzy ANP, which is a combination of ANP and Fuzzy Logic methods was
developed. Additionally, in the literature, fuzzy ANP methods are based on
type-1 fuzzy sets. There are several methods that use the type-1 fuzzy ANP.
Onut et al. [25] is based on a type-1 fuzzy ANP approach that is used for
transportation-mode selection between Turkey and Germany. Dagdeviren and
Yuksel [26] measured the sectoral competition level (SCL) of an organiza-
tion by using type-1 fuzzy ANP technique. Li et al. [27] applied fuzzy ANP
due to the success of with complex problems and to eliminate the uncertain
judgement of decision makers’. 16 sub-criteria and 4 main criteria (avail-
ability, cost, quality and company’s reputation) are described in this research.
Guneri et al. [28] been applied the fuzzy ANP method for selecting a shipyard
location. Chiang and Tzeng [29], Ayag and Ozdemir [30], Kumar and Maiti
[31], and Binici et al. [32] applied type-1 fuzzy ANP for the selection of the
best 3PL company to resolve dynamic and uncertain environments chosen to
the method. This research was developed by using Chang’s Extent Analysis.
Abdullah and Najib [33] proposed a new fuzzy AHP characterized by interval
type-2 fuzzy sets by using the likelihood approach of Chen and Lee [5, 20].
Buckley [3] developed another extension of the method from Saaty’ s AHP
[34] method with ai j fuzzy comparative rates. Buckley [3] called attention to
two problems in Van Laarhoven and Pedrycz’ s methods [1]: It is necessary
to use the absolute exponential fuzzy numbers and in the absence of solu-
tion of linear equations. Buckley has used the geometric mean to calculate
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Linguistic scales Fuzzy scales

Equally important (E) (1, 1, 1)
Weakly important (WI) (1, 3, 5)
Strongly important (S) (3, 5, 7)
Very strongly important (VS) (5, 7, 9)
Absolutely important (AS) (7, 9, 9)

TABLE 1
Definition of the fuzzy scale of the linguistic variables

performance scores and solve these problems. In this case, the only solution
is guaranteed for comparison matrices. The steps of Buckley’s method are
given below [3].

Step 1: Establishing Model
A Network Model has been designed to handle inner dependence, outer
dependence and feedback.

Step 2: Comparing Criteria and Checking the Consistency Ratio
Opinions of experts represent a triangular fuzzy number instead of an exact
number in this step because of eliminating uncertainties.

Ã =

∣∣∣∣∣∣∣∣∣∣∣∣

1 ã12 . . . ã1n

ã21 1 · · · ã2n

...

ãn1

...

ãn2

· · ·
. . .

...

1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ã12 . . . ã1n

1/
ã21

1 · · · ã2n

...

1/
ãn1

...

1/
ãn2

· · ·
. . .

...
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
where ãi j are triangular fuzzy numbers according to Table 1.

To check the consistency ratio, triangular fuzzy numbers were defuzzified
according to the graded mean integration method.

A = l + 4m + u

6
(26)

According to the graded mean integration approach, triangular fuzzy num-
bers were transformed into an exact number. If the consistency ratio is less
than 0.10, the comparison is acceptable. If the comparison is not consistent,
a pairwise comparison is compared again by experts.
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Step 3: Calculating Fuzzy Weights
The fuzzy geometric mean for each row of matrices is calculated for the
weights of criteria and alternatives.

r̃i = (ãi1 ⊗ . . . ⊗ ãin)1/n ,∀i (27)

w̃i = r̃i ⊗ (r̃1 ⊕ . . . ⊕ r̃n)−1 (28)

w̃i = (li , mi , ui )

where ⊗ and ⊕ are fuzzy multiplication and addition operations.

Ũi =
n∑

ı=1

w̃ j r̃i j (29)

where Ũi is the fuzzy utility of alternatives or criteria.

Step 4: Obtaining the Best Non-Fuzzy Performance (BNP) Number

BNPw̃i =
[

(ui − li ) + (mi − li )

3
+ li

]
,∀i (30)

Using Equation 30, defuzzified weights were calculated. Therefore, defuzzi-
ficiation is applied according to the BNP method.

Step 5: Selection the best alternative
The best alternative that has the maximum weight is selected among all of
the alternatives according to the BNP number.

5.2 Type-2 Fuzzy ANP
In this section, Buckley’s method will be modified by the use of interval type-
2 fuzzy sets. [24]

Step 1: Establishing the Network Model
This step is applied like the type-1 Fuzzy ANP. The main criteria, sub-
criteria, alternatives, inner/outer dependence and feedbacks are determined
by experts.
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Linguistic Variables Trapezoidal interval fuzzy scales

Equally important (E) (1,1,1,1;1,1) (1,1,1,1;1,1)
Weakly important (WI) (1,2,4,5;1,1) (1.2,2.2,3.8,4.8;0.8,0.8)
Strongly important (S) (3,4,6,7;1,1) (3.2,4.2,5.8,6.8;0.8,0.8)
Very strongly important (VS) (5,6,8,9;1,1) (5.2,6.2,7.8,8.8; 0.8,0.8)
Absolutely important (AS) (7,8,9,9;1,1) (7.2, 8.2, 8.8, 9; 0.8, 0.8)

TABLE 2
Definition interval type-2 fuzzy scale of the linguistic variables

Step 2: Comparing Criteria and Checking Consistency Ratio
After establishing the network, fuzzy comparison matrices are evaluated
among all of the criteria of the network systems according to Table 2.

˜̃A =

∣∣∣∣∣∣∣∣∣

1 ˜̃a12 . . . ˜̃a1n
˜̃a21 1 · · · ˜̃a2n
...

˜̃an1

...
˜̃an2

· · ·
. . .

...
1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1 ˜̃a12 . . . ˜̃a1n
1/˜̃a21

1 · · · ˜̃a2n

...
1/˜̃an1

...
1/˜̃an2

· · ·
. . .

...
1

∣∣∣∣∣∣∣∣∣∣
where

1/˜̃a =

⎛
⎜⎜⎜⎝
(

1

aU
14

,
1

aU
13

,
1

aU
12

,
1

aU
11

; H1(aU
12), H2(aU

13)

)
,

(
1

aL
24

,
1

aL
23

,
1

aL
22

,
1

aL
21

; H1(aL
22), H2(aL

23)

)
⎞
⎟⎟⎟⎠ (31)

The consistency of each of the pairwise comparison matrices is checked like
classical fuzzy ANP by using defuzzified matrices.

Step 3: Calculating Geometric Means and Fuzzy Weights
The geometric mean of each row is computed. Then, the fuzzy weights are
calculated by normalization. The geometric mean of each row ˜̃ri is calculated
as

˜̃ri = ( ˜̃ai1 ⊗ . . . ⊗ ˜̃ain
)1/n

,∀i (32)

where

n

√
˜̃ai j =

⎛
⎜⎝
(

n

√
aU

i j1,
n

√
aU

i j2,
n

√
aU

i j3,
n

√
aU

i j4; HU
1 (ai j ), HU

2 (ai j )
)

,(
n

√
aL

i j1,
n

√
aL

i j2,
n

√
aL

i j3,
n

√
aL

i j4; H L
1 (ai j ), H L

2 (ai j )
)

⎞
⎟⎠
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The fuzzy weight of the ith criterion is computed as;

˜̃wi = ˜̃ri ⊗ ( ˜̃r1 ⊕ . . . ⊕ ˜̃rn
)−1

(33)

where

˜̃ai j

˜̃bi j

=

⎛
⎜⎜⎜⎝

aU
1

bU
4

,
aU

2

bU
3

,
aU

3

bU
2

,
aU

4

bU
1

, min
(
HU

1 (a), HU
1 (b)

)
, min

(
HU

2 (a), HU
2 (b)

)
;

aL
1

bL
4

,
aL

2

bL
3

,
aL

3

bL
2

,
aL

4

bL
1

, min
(
H L

1 (a), H L
1 (b)

)
, min

(
H L

2 (a), H L
2 (b)

)
⎞
⎟⎟⎟⎠

The fuzzy weights are obtained as follows:

˜̃Ui =
n∑

ı=1

˜̃w j ˜̃ri j

where ˜̃Ui is the fuzzy utility of alternative or criteria.

Step 4: Obtaining Defuzzified Weights, Supermatrices and the Limit Super-
matrix
Using the proposed DTraT methods (Equation 25) Kahraman et al. [24],
defuzzifications of main, sub-criteria and alternative weights are made using
both inner/outer dependences and feedback.

An unweighted supermatrix that includes both inner/outer dependences
and feedback is handled by using the weights obtained. The weighted super-
matrix are calculated by applying a normalization of the unweighted super-
matrix. The limit supermatrix is calculated by multiplying 2k+1 times the
weighted supermatrix where k is a very large number. The limit supermatrix
shows the limit weights of main, sub-criteria and alternatives.

Step 5: Selection of the best alternative
The weights of alternatives are calculated by multiplying the weights of
the main criteria, the sub-criteria, the limits and the alternatives that were
determined by experts. Additionally, normalization is applied for all criteria.
Finally, the alternative that has the maximum weight is selected among all of
the alternatives as the best alternative.

6 APPLICATION TO THE SELECTION OF A 3PL COMPANY BY
USING INTERVAL TYPE-2 FUZZY ANP

In supply chain management, selection of the logistics firm is a very
important multi-criteria decision making problem. Companies transfer their
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FIGURE 3
Network design of the model

logistics facilities to other companies that are experts in supply chain man-
agement to reduce costs, for quality development and to provide a compet-
itive advantage. This event is called the 3PL. Companies must be able to
effectively a use multi-criteria decision making method to compare firms,
making the correct decision and preventing financial losses.

This study aims to propose a new approach by using the interval type-2
fuzzy ANP method. There are many studies of selecting a 3PL company, but
there is no study that uses the interval type-2 fuzzy ANP method. Therefore,
the interval type-2 fuzzy ANP method was applied in the selection of suppli-
ers for the company that is located in Eskisehir Organized Industry in Turkey.

Step 1: Model hierarchy and network design are shown in Figure 3 [35]. The
main criteria are described under benefit, opportunities, cost and risk (BOCR)
as well as according to 17 sub-criteria by expert.

Step 2: After establishing a network, expert compared the main criteria and
sub-criteria by using the type-2 fuzzy scale of the linguistic variables shown
in Table 2. The pairwise matrix of the main criteria with respect to the goal
are given in Table 3. Additionally, the pairwise comparison matrix with type-
2 fuzzy trapezoidal numbers is given in Table 4. In addition, the pairwise
comparison matrices with type-2 fuzzy numbers of sub-criteria are handled
and the pairwise comparison matrix of inner dependence with type-2 fuzzy
numbers is given in Table 5 as an example.
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Goal B O C R

B E WI WI S
O 1/WI E WI S
C 1/WI WI E VS
R 1/S 1/S 1/VS E

TABLE 4
Pairwise comparision matrix for the main criteria

Market Share MT LTR CR

MT E WI WI
LTR 1/WI E 1/S
CR 1/WI S E

TABLE 5
Pairwise comparision matrix for market share

A consistency ratio check of defuzzified pairwise comparison matrices
was performed. The defuzzified pairwise comparison matrix was checked for
its consistency ratio and found to be smaller than 0,10. This step has to be
repeated for each set of pairwise comparison matrices.

Step 3: Calculate the geometric means and type-2 fuzzy weights as follows:
The geometric mean of each row is calculate using Equation 3. The geometric
mean of the first row is calculated as;

˜̃rB = ( ˜̃a11 ⊗ ˜̃a12 ⊗ ˜̃a13 ⊗ ˜̃a14
)1/4

= [(1, 1, 1, 1; 1, 1) (1, 1, 1, 1; 1, 1) ⊗
(1, 2, 4, 5; 1, 1) (1.2, 2.2, 3.8, 4.8; 0.8, 0.8)

⊗ (1, 2, 4, 5; 1, 1) (1.2, 2.2, 3.8, 4.8; 0.8, 0.8)

⊗ (3, 4, 6, 7; 1, 1) (3.2, 4.2, 5.8, 6.8; 0.8, 0.8)]1/4

= (1.32, 2, 3.13, 3.64; 1, 1)(1.46, 2.12, 3.03, 3.54; 0.8, 0.8)

˜̃wB = ˜̃rB ⊗ (˜̃rB ⊕ ˜̃rO ⊕ ˜̃rC ⊕ ˜̃rR)−1

= (1.32, 2, 3.13, 3.64; 1, 1)(1.46, 2.12, 3.03, 3.54; 0.8, 0.8)

⊗[(1.32, 2, 3.13, 3.64; 1, 1) (1.47, 2.12, 3.02, 3.54; 0.8, 0.8)

⊕ (0.88, 1.19, 1.86, 2.43; 1, 1) (0.95, 1.25, 1.78, 2.28; 0.8, 0.8)

⊕ (0.67, 0.78, 1.19, 1.73; 1, 1) (0.69, 0.81, 1.13, 1.57; 0.8, 0.8)

⊕ (0.22, 0.24, 0.32, 0.39; 1; 1) (0.22, 0.25, 0.31, 0.37; 0.8, 0.8)]−1

= (1.32, 2, 3.13, 3.64; 1, 1)(1.46, 2.12, 3.03, 3.54; 0.8, 0.8) ⊗
(0.12, 0.15, 0.24, 0.32; 1, 1)(0.13, 0.16, 0.23, 0.30)

= (0.16, 0.31, 0.74, 1.18; 1, 1)(0.19, 0.34, 0.68, 1.07; 0.8, 0.8)
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B (1.32,2,3.13,3.64;1,1)(1.46,2.12,3.03,3.54;0.8,0.8)
O (0.88,1.19,1.86,2.43;1,1)(0.95,1.25,1.78,2.28;0.8,0.8)
C (0.67,0.78,1.19,1.73;1,1)(0.69,0.81,1.13,1.57;0.8,0.8)
R (0.22,0.24,0.32,0.39;1;1)(0.22,0.25,0.31,0.37;0.8,0.8)

TABLE 6
Geometric means of the pairwise comparison matrix for the main criteria

B (0.16,0.31,0.74,1.18;1,1)(0.19,0.34,0.68,1.07;0.8,0.8)
O (0.11,0.18,0.44,0.79;1,1)(0.12,0.20,0.40,0.69;0.8,0.8)
C (0.08,0.12,0.28,0.56;1,1)(0.09,0.13,0.25,0.47;0.8,0.8)
R (0.03,0.04,0.08,0.13;1,1)(0.03,0.04,0.07,0.11;0.8,0.8)

TABLE 7
Type-2 fuzzy weights for the main criteria with respect to the goal

MS DE GPRS SMS DOT

GD 0.0000 0.1488 0.0000 0.0000 0.0000
MT 0.0833 0.0000 0.0000 0.0000 0.0000
LTR 0.0833 0.0746 0.0000 0.0000 0.0000
CR 0.0000 0.0000 0.0000 0.0000 0.0000
F 0.0000 0.0000 0.0000 0.0000 0.0000
SRP 0.0000 0.0000 0.0000 0.0000 0.0000
GIN 0.0000 0.0000 0.0000 0.0000 0.0000
CRP 0.0833 0.1100 0.0000 0.0000 0.0000

TABLE 8
The inner dependences and feedback in supermatrix for the 3pl criteria

The type-2 fuzzy geometric means and type-2 fuzzy weights of the pairwise
comparison matrix for the main criteria are given in Table 6 and Table 7,
respectively, for the selection of the 3PL companies.

In Table 8, the relationship between opportunities criteria and benefits cri-
teria in the supermatrix are only given due to the large size of the superma-
trix. According to Table 8, the geographical distribution (GD) is impressed
by domain expertise (DE) at a rate of 0.1488. As a likely choice the company
reputation (CR) is impressed by market share (MS) at a rate of 0.0833.

Using Equation 25, defuzzificiation weights are handled. As an example,

DTraTBENEFITS =
(1.18−0.16)+(0.85*0.31−0.16)+(1*0.74−0.16)

4 + 0.16

2

+
[

(1.07−0.19)+(0.40*0.34−0.19)+(0.80*0.68−0.19)
4 + 0.19

]
2

= 0.5354



INTERVAL TYPE-2 FUZZY ANALYTIC NETWORK PROCESS FOR MODELLING 329

B 0.5354
O 0.3379
C 0.2293
R 0.0610

TABLE 9
Defuzzified weights for the main criteria with respect to the goal by using
the DTraT method

Alternatives Weights
A 0.438
B 0.376
C 0.185

TABLE 10
The overall synthesized priorities for the alternatives

DTraTOPPURTUNUTIES =
(0.79−0.11)+(0.85*0.18−0.11)+(1*0.44−0.11)

4 + 0.11

2

+
[

(0.69−0.12)+(0.40*0.20−0.12)+(0.80*0.40−0.12)
4 + 0.12

]
2

= 0.3379

DTRaTCOSTS =
(0.56−0.08)+(0.85*0.12−0.08)+(1*0.28−0.08)

4 + 0.08

2

+
[

(0.47−0.09)+(0.40*0.13−0.09)+(0.80*0.25−0.09)
4 + 0.09

]
2

= 0,2293

DTRaTRISKS =
(0.13−0.03)+(0.85*0.04−0.03)+(1*0.08−0.03)

4 + 0.03

2

+
[

(0.11−0.03)+(0.40*0.04−0.03)+(0.80*0.07−0.03)
4 + 0.03

]
2

= 0,061

Step 4: Using Equation 25, defuzzification of the main criteria, sub-criteria
and alternative weights is performed for both inner/outer dependences and
defuzzificiation of main criteria weights is shown in Table 9. A superma-
trix that includes both inner/outer dependences and feedback is handled by
using the weights obtained. The limit supermatrix shows the limit weights
of the main and sub-criteria, as shown in Table 10. The limit supermatrix
is calculated by multiplying 2k+1 times the weighted supermatrix. After this
calculation, the values in the stochastic-based supermatrix converge to the
constant values according to the principles of Markov Chain. Additionally,
the weights of alternatives are handled by the limit supermatrix, as shown in
Table 11.
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Main Global Local Limit
Criteria Weights Sub-Criteria Weights Weights

BENEFITS 0.3952 Market Share (MS) 0.2832 0.051
Domain Expertise (DE) 0.402 0.072
Traceability with GPRS (GPRS) 0.094 0.016
Giving information with
SMS or e-mail (SMS) 0.045 0.008
Delivery on Time (DOT) 0.174 0.032

OPPORTUNITIES 0.2496 Geographical Distribution (GD) 0.112 0.043
Mutual Trust (MT) 0.198 0.076
Long Term relationship (LTR) 0.196 0.075
Company References (CR) 0.144 0.0554
Flexibility 0.068 0.026
Contribution of the Social
Responsibility Project (SRP) 0.058 0.019
Giving importance of the nature (GIN) 0.058 0.022
Company Reputation (CRP) 0.170 0.065

COSTS 0.1703 Custom Costs (CC) 0.395 0.002
Delivery Costs (DC) 0.605 0.011

RISKS 0.1846 Risk Management of damage (RMD) 0.500 0.12
Security of customer information (SCI) 0.500 0.12

TABLE 11
Priorities for the criteria and sub-criteria

According to Table 10, the category of benefits criteria is the major con-
sideration for the selection of a 3PL company. Looking at the sub-criteria,
risk management of damage and the security of customer information are the
most effective criteria for the firm. Then, mutual trust, long-term relationships
and the company’s reputation are in order an effective criteria.

Step 5: Selecting the best supplier.
Alternatives are ranked by using weighted the sum methods and are given in
Table 11.

When the decision model includes dependences and feedback among the
criteria, Supplier A has chosen the best 3PL company.

7 CONCLUSIONS

In the logistics sector, the selection of a logistics company is a crucial prob-
lem because many criteria are included in the decision. Additionally, the
selection of a logistics company is defined as a multi-criteria decision making
problem. In addition, experts who made their judgement by using a linguistic
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term fuzzy approach needed to solve this problem. While many papers have
handled the fuzzy AHP and fuzzy ANP methods, the type-2 fuzzy approach
provides determination of uncertainty by incorporating fuzziness for the
membership functions. Interval type-2 fuzzy sets are preferred to make the
calculation easier.

Although the interval type-2 fuzzy AHP method has been introduced in
the literature, the interval type-2 fuzzy ANP method is first proposed for the
MCDM problem in this paper. Due to the lack of use of the interval type-2
fuzzy ANP method in this field, this study is an important contribution to the
literature.

After introducing the structure of the interval type-2 fuzzy ANP method,
the best 3PL company was selected by using interval type-2 fuzzy ANP
according to the BOCR criteria and sub-criteria. For further research, the
structure of the intuitionistic fuzzy ANP can be proposed and applied to the
selection of a 3PL Company.
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[22] C. Ulu, M. Güzelkaya, and I. Eksin, “A closed form type reduction method for piecewise
linear interval type-2 fuzzy sets,” International Journal of Approximate Reasoning, vol.
54, pp. 1421–1433, 2013.

[23] A. Niewiadomski, J. Ochelska, and P. S. Szcpaniak, “Interval-valued linguistic summaries
of databases,” Control and Cybernetics, vol. 35, pp. 415–443, 2006.
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