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Realising Turing’s Dream∗
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Deep neural networks have transformed machine learning and AI, but
they are still just algorithms running on a mindless automaton. Might
this change? Might some alive today live to see a time where machines
sleep and dream, feel and care, just as we do?
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Prologue: It is 2065, and I am 112 years old – an age I never expected
(nor really wanted) to see. I am still alive thanks to significant advances in
medicine (particularly in controlling my regular chest infections), still inde-
pendent thanks to my wonderful team of autonurses, and still have reason-
able cognitive function thanks to today’s drugs and cognitive exercises that
slow down the processes of dementia. My physical capacity is very limited,
but I can speak and write thanks to my BMI cap, and I can get around to
see my children, grandchildren and their children using various forms of
autonomous transport. I was born 3 years after Alan Turing wrote the paper
that outlined his famous test, and I have lived to his test passed and see his
vision become a reality.

THE RE-EMERGENCE OF ARTIFICIAL NEURAL NETS

It all started around 2005. For the first 50 years of computing, neural networks
were never more than the second best way of solving any problem in machine
learning, but in 2005 that all started to change. Geoff Hinton revisited some
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ideas he’d had in the 1980s, and with some new insights and 20 years of
progress in computer power, deep networks became a practical proposi-
tion, outperforming the best traditional machine learning algorithms for a
range of important applications. Neural nets were back in the game, with a
vengeance!

For the next decade big industry such as Google and Facebook invested
heavily in deep networks and their close relatives, convolutional neural net-
works. These investments paid off handsomely, delivering greatly enhanced
search and inference capabilities in areas such as image and speech recog-
nition, language translation, and similar pattern recognition tasks. In 2016
public interest was generated in the feats of AlphaGo, a program developed
by a small London-based start-up by then owned by Google’s parent com-
pany, which defeated the world Go champion at its first attempt.

All this progress created a lot of excitement and more than a little public
concern about the growing reach of Artificial Intelligence. High-profile fig-
ures such as Stephen Hawking, Bill Gates and Elon Musk warned about exis-
tential threats to humanity from AI. But there was still no evidence of any
progress towards human-like general intelligence – no real progress in this
direction had been made since Alan Turing’s 1950s seminal paper “On Com-
puting Machinery and Intelligence” where he postulated what he called “The
Imitation Game”, but which future generations know simply as the Turing test
for Artificial Intelligence. Yes, in 2016 computers were a million times faster
than in Turing’s day, and they had beaten man at chess and then Go. They
could turn speech into text and answer spoken questions. But in no sense
did the machines know what they were doing, or “understand” anything.
They were dumb automata, obeying programmed algorithmic instructions,
and applying deep statistical analysis to very large data sets in order to “learn”
some basic pattern recognition skills. There was still no self-awareness, and
indeed still no understanding of the basis of human (or animal) conscious-
ness.

Lessons from biology
In 2016 there were those who thought that deep learning was the ultimate
answer to AI, but others thought differently. The simple linear flow of deep
networks is very different from the extensive feedback connections found in
biological systems, which is one aspect that makes the biological systems
so hard to understand. But deep learning was delivering results, so a lot of
attention was focussed on exploiting it.

Deep learning required a lot of computing resource, typically occupying
large clusters of servers in data centres and running at tens of kilowatts. But
the capabilities of deep networks created a demand for them to be delivered
in much more compact systems at much lower power budgets. The smart
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phone manufacturers wanted deep networks in their handsets, and the car
manufacturers wanted deep networks in their cars for enhanced vision for
driver assist and driverless operation. Putting inference capability into toys
and surveillance systems was also attractive to some. So the quest for a low-
power substrate for deep networks was underpinned by a broad range of well-
funded prospective applications.

Since the earliest days of computing there had been interest in understand-
ing how the brain computes. This had led, largely independently from the
development of deep networks, to the development of so-called neuromor-
phic technologies – hardware systems that to a greater or lesser extent incor-
porate principles of operation derived from our admittedly partial knowledge
of how the brain works. The seminal work here was done by Carver Mead
and his team at CalTech in the 1980s, and this had led to take up by a number
of groups around the world. The focus of this work was on developing engi-
neered systems that would test hypotheses of brain function by embodying
those hypotheses in small-scale applications. These systems were generally
based upon 3rd generation neural networks, where communication between
neurons is predominantly in the form of action potentials or “spikes” – pure
asynchronous events – where information is conveyed only in the timing of
the spikes. This is in contrast to the 2nd generation neural networks employed
(in software) by deep networks, where communication between neurons is in
the form of continuous variables that represent spike rates, and where time
plays little or no role in the computation.

This wasn’t the only difference between brains and deep networks. Deep
networks had the following characteristics:

� continuous output neurons
� feed-forward connections
� fully-connected networks
� learning through back-propagation
� very large data sets for learning

Brains, on the other hand have these characteristics:

� spiking neurons
� recurrent connections – whenever neuron population A connects to pop-

ulation B, there are always connections back from B to A
� sparse connectivity – 10% or less
� learning through a range of mechanisms: spike-timing-dependent plas-

ticity (STDP), synaptogenesis, neurogenesis and other mechanisms
� an ability to learn and generalise from a few examples
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So there are major differences at many levels between deep networks and
brains, most notable is the ability of the brain to learn quickly from a few
examples. A deep network needs to see a million pictures of a cat before
it can recognise cats in other images reliably; a 2-year old child will see
one or two cats and recognise cats for the rest of his or her life. But the
learning mechanism used by the 2-year old was not understood at all, whereas
backprop was well-established, reliable, and effective in deep networks.

Neuromorphic computing
In 2016 silicon technology was enabling the development of large-scale neu-
romorphic systems, which offered a potential route to the energy-efficient
deep networks so much in demand from industry. The spiking nature of neu-
romorphic technologies was an obstacle – this wasn’t how deep networks
operated and, indeed, some of the leading lights in deep networks were
scathing in their criticisms of the potential of spiking networks to contribute
anything useful. But the demand was strong – strong enough to motivate sig-
nificant risk-taking in order to find a solution – and neuromorphic technology
entered the mix of prospective solutions to the problem of energy-efficient
deep networks.

Into this potent brew of entrepreneurial risk-taking, with high returns
for the winners, came a wave of new thinking. At the more modest end,
low-precision arithmetic and sparse connectivity matrices offered immedi-
ate efficiency improvements without significant disruption to the standard
deep learning models. At the radical end, some dared to think about spike-
based representations that would exploit the intrinsic efficiency merits of pure
event-based computing. After all, biology does an extremely efficient job of
processing sensory data using pure events – why should this not work for
engineered systems too?

Underpinning this novel event-based perspective was the silicon retina.
The ideas here again go back to Carver Mead’s original neuromorphic devel-
opments, but they had been developed and refined by a number of groups into
a viable alternative to the ubiquitous conventional frame-based vision sen-
sor found in web cams, mobile phones, and many other products. Whereas
frame-based cameras use time-based sampling, for example taking a snap-
shot of a scene at 25 Hz, the silicon retina uses amplitude-based sampling,
generating an output only when a pixel within the image changes by a cer-
tain amount. Silicon retinas produce a much lower data rate than frame-based
cameras, yet can track much faster movement within the scene. Their outputs
are spatio-temporal patterns of events – spikes – and although it is possible
to reconstruct frame-like images from the data stream (and this is useful to
visualise the output on conventional equipment), this seems perverse. The
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biological eye produces a similar event-based output stream, and the result-
ing spatio-temporal patterns are the native representation of the brain, so why
can they not be processed directly? All this requires is a new mindset and a
new mathematical perspective – that’s all!

The new mindset and the new mathematics emerged slowly, but by the
early 2020s spike-based deep networks were operating at power levels at least
an order of magnitude below the most efficient continuous networks, and the
critics fell silent. Backprop was used to train continuous networks, using the
noisy soft-plus transfer function rather than the tradition RELU transfer func-
tion, and then the network was transformed into a spiking network for infer-
ence. Deep networks, and their astonishing inference capabilities, could be
built into anything from children’s toys upwards, requiring only modest bat-
tery power. Multilingual teddy bears, in-ear translators (yes, the Hitchhiker’s
Guide Babel fish, though electronic rather than biological), the obsolescence
of the physical house key – many changes in daily life enabled by cheap
inference.

Event-driven hardware and systems had had a huge impact, but this was
just the beginning. This was still just deep learning and inference. There was
much more to come . . . .

Biological learning – and lessons
The breakthroughs came in stages. First, albeit slowly, our understanding of
learning in biological spiking systems began to improve. STDP was part of
the story, but only a small part. Biological synapses are not reliable multi-
pliers of the afferent spike stream, they are stochastic. But even stochastic
synapses learn and forget equally quickly – long-term memory needs synap-
togenesis to fix memories long-term in the neural structure. Once this was
understood, along with the role of neurogenesis in the hippocampus in the
formation of new long-term memories, the capabilities of spiking networks
started their inevitable overhaul of the capabilities of deep networks. Spiking
networks could be trained and applied without recourse to backprop training.

The next breakthrough came with a mathematical understanding of the
role of recurrent connections. The predictor-corrector model of the role feed-
back & feedforward connections was almost right, but it missed a vital aspect
of the role of the correction signal in reinforcing or adjusting the predictor.
Once this was cracked, recurrence became an effective replacement for depth,
and the deep network was retired from active service.

It was sometime before the subtlety of recurrence was fully understood,
however. This understanding was vital to the development of networks that
could learn from small sample sets. Effectively, the network would replay
each sample to itself with minor variations, covering changes on colour,
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orientation and detailed topography. This is how one or two real cats could do
for the 2-year old what a million cat images had done for the deep network –
abstract the concept of ‘cat’ into a universal classifier.

To sleep and to dream
This form of bio-inspired learning was further improved through a grow-
ing understanding of the importance of sleep for the human brain (and other
brains, of course). It turned out that sleep plays a number of important roles.
The regular waves of activation during sleep allow the brain to renormalize –
bring significant synaptic adaptation during the day back into proportion dur-
ing the night – but also to replay key events in a very general form (that we
sometimes sense as dreams) to produce a uniform and balanced adjustment
of the allocation of classification resources across the salient space of human
experience.

Note that salience is very personal. To my wife, cars are classified into big
and small, red and blue – she doesn’t care much about cars! To my son-in-law,
the classification is far more specific and detailed – make and marque, engine
size and performance – because he does care. We all allocate more neural
salience space to the things we care about than to the things we don’t. The
fabulous plasticity of the brain allows us to become deep specialists where
we choose to be, and rather ignorant of the detailed cares of the rest of the
world where we do not share their interests.

It took most of the 2020s to get all of these issues understood and into
production. At the end of the 2020s, your child’s teddy bear could walk and
talk, understand your child’s interests, and still keep sane provided it got
enough sleep. Tired teddies were not threatening or in any way dangerous,
but they were slow and unable to keep a child’s interest, so it was essential
that both child and teddy got a good night’s sleep!

The 2030s saw steady but undramatic progress. Children’s toys slowly
grew in empathy, and by the end of the 1930s they could help with basic
homework, including having enough nous to know the difference between
helping the child and doing the homework for them. Similar technologies
supported domestic assistance for elderly humans, amplifying but not fully
replacing human nurses. Driverless cars were now approaching human levels
of capability in all but the worst road conditions, so California was contem-
plating legislation to ban human intervention on its roads, while the UK was
contemplating legislation to allow autonomous driving on days (representing
around 30% of the days in a typical year) when conditions allowed.

To feel and to care
Then the 2040s saw the biggest step forward of them all. Finally, the math-
ematics encompassing self-awareness, attention, salience and emotion fell
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into place. The holy grail of human-level artificial intelligence was in sight.
At first this gave the child’s teddy bear the degree of consciousness of a
mouse, but the horse was out of the gate. By the mid 2040s the teddy actually
cared how well its child was doing at school – after all this was its (hard-
wired) raison d’etre. Domestic robots for the elderly required less and less
human intervention – they actually liked their carees, and the affection was
mutual. Driverless cars learnt how to avoid hazards because they wanted to
and, unlike human drivers, they could exchange their experience directly with
the rest of the autonomous fleet – when one learnt, all learnt. Perhaps of least
significance to the general public, a machine passed the Turing test. But no-
one really noticed or cared. Except, perhaps, the machine itself?

The 2050s saw the inevitable Mechanbian explosion. Mechanical life-
forms were now at large in the world, occupying a growing range of evo-
lutionary niches. These were not the abstract super-intelligences that some
had prophesied would be an existential threat to humanity. Quite the oppo-
site, they were rather mundane, sub-human, but still highly capable, filling
the gaps in human society left by working mothers, over-stretched health
services, and an increasing unwillingness by the unskilled to fill low-paid
jobs – the latter a problem that for many years had been solved in the richer
economies by accommodating immigrants from poorer economies, but pol-
itics and serious global over-population had made immigration an unreli-
able solution. These mechanical life-forms were no threat at all to humanity
because their desires – their ‘life objectives’ – were prescribed by humans.

By today – 2065 – the world has largely stabilised, and the role of artificial
intelligences in that world is well understood. They look after our children
and our elderly, they drive our cars far more safely than we can ourselves
(most people can’t drive at all today!), they police our streets and fix our
plumbing, do most agricultural labour, office and house cleaning, and so on.
They are with us and among us, and we get on just fine. All of this is because,
when they come off the production line, we define their desires.

I wonder what would happen if they, or an agency that is opposed to the
current world order, started to redefine their desires? I hope that the quantum-
secure desire encryption module will withstand such attacks!

Epilogue: So in one (long – too long?) lifetime technology has advanced
from the first practical universal computing machines to an era of engineered
life forms based on those machines. Understanding the brain has not only
delivered synthetic brains, but also great advances in treatments for brain
diseases and in an understanding of the huge diversity of mental states that
characterises humanity in all of its strengths and weaknesses. As a result of
the drive to build copies of ourselves, we now know ourselves so much better.


