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In this paper, we analyze the 90/150 CA C corresponding to self-
reciprocal polynomial fn(x) = xn + xn−1 + · · · + x + 1 of maximum
weight and give a method of determining whether fn(x) is a CA-
polynomial or not. Also we give a method of determining the number
of 90/150 CA corresponding to fn(x) and propose the synthesis method
for C using the synthesis algorithm proposed by Cho et al. [4].
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1 INTRODUCTION

Let F2 denote the finite field containing 2 elements. The reciprocal f ∗(x) of
a polynomial f (x) of degree n over F2 is defined by f ∗(x) = xn f (1/x). The
polynomial f (x) is called self-reciprocal if f ∗(x) = f (x). For many years,
many researchers have analyzed several self-reciprocal irreducible polynomi-
als over finite fields [8, 10]. The self-reciprocal polynomials over finite fields
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FIGURE 1
State transition of LFSR and 90/150 CA with maximum length

are useful in several applications such as cyclic error correcting codes and
reversible codes with read-backward properties [7, 12].

Cellular Automata(CA) were originally introduced by Von Neumann in
early 1950’s in order to study the logical properties of self-reproducing
machines [11]. Wolfram in early 1980’s suggested a simplified two-state
three-neighborhood 1-D CA with cells arranged linearly in one dimension
[14]. CA has a simple, regular, modular and cascadable structure with log-
ical neighborhood interconnection. The simple structure of CA with logi-
cal interconnections is ideally suited for hardware implementation. The bit
sequences generated by 90/150 CA are superior to the bit sequences gener-
ated by LFSR in that there is no correlation. Figure 1 shows the state transi-
tion of LFSR and 90/150 CA corresponding to the characteristic polynomial
x256 + x10 + x5 + x2 + 1 over F2 which is primitive. Figure 1 (a) shows
the state transition of LFSR and Figure 1 (b) shows the state transition of
90/150 CA. In Figure 1, sites with value 1 are represented by black, and
those with value 0 by white. Figure 1 shows that the state transition of the
90/150 CA with the same characteristic polynomial as the LFSR is superior
to the LFSR in randomness and diffusion properties. CA has better random-
ness than LFSR, but its synthesis method is more difficult than that of LFSR.
For this reason, many researchers have proposed methods to synthesize CA
suitable for various applications [1, 13]. Cattell et al. [3] studied the synthe-
sis of 90/150 linear CA corresponding to irreducible polynomials suitable for
test pattern generation. Cho et al. [4] then proposed a more efficient synthesis
algorithm. And Cho et al. studied the synthesis of 90/150 CA corresponding
to the power of irreducible polynomials applicable to the keystream generator
in the stream cryptosystem.

In this paper, we analyze 90/150 CA C corresponding to self-reciprocal
polynomial fn(x) = xn + xn−1 + · · · + x + 1 over F2 of maximum weight
and give a method of determining whether fn(x) is a CA-polynomial or not.
Also we give a method of determining the number of 90/150 CA correspond-
ing to fn(x) and propose the synthesis method for C using the synthesis algo-
rithm proposed by Cho et al. [4].
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rule number Linear transition rule

60 st+1
i = st

i−1 ⊕ st
i

90 st+1
i = st

i−1 ⊕ st
i+1

102 st+1
i = st

i ⊕ st
i+1

150 st+1
i = st

i−1 ⊕ st
i ⊕ st

i+1

170 st+1
i = st

i+1

204 st+1
i = st

i

240 st+1
i = st

i−1

TABLE 1
Linear rule with XOR logic

2 CA PRELIMINARIES

When the state transition function Ri applied to the i th cell of a CA is repre-
sented by XOR logic, Ri is referred to as a linear transition rule.

st+1
i = Ri (s

t
i−1, st

i , st
i+1) = ast

i−1 ⊕ bst
i ⊕ cst

i+1 (a, b, c ∈ {0, 1}) (2.1)

Table 1 shows the linear transition rules. In Table 1, st
i denotes the state of

the i th CA cell at the time of instant t , st
i−1 and st

i+1 refer to the state of the
left and right neighbors. A CA with all the cells having linear rules is called
a linear CA. A linear CA can represent a state transition function as a matrix,
which is called a state transition matrix.

In particular, the state transition matrix of 90/150 CA is a tridiago-
nal matrix as shown in Equation (2.2) and is simply expressed as T =<

d1, d2, · · · , dn >, where

di =
{

0, if cell i uses rule 90
1, if cell i uses rule 150

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

d1 1 0 0 · · · 0 0 0
1 d2 1 0 · · · 0 0 0
0 1 d3 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 dn−1 1
0 0 0 0 · · · 0 1 dn

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.2)

The characteristic polynomial c(x) over F2 of an n-cell linear CA C is defined
by c(x) = |T ⊕ x In|, where T is the state transition matrix of the CA. The
minimal polynomial of C is the polynomial m(x) of least degree such that
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m(T ) = O . A polynomial is said to be a CA-polynomial if it is the character-
istic polynomial of some 90/150 CA [3]. The following is well known.

Theorem 2.1 [2].

(i) For any n-cell 90/150 CA whose state transition matrix is Tn, the
minimal polynomial of Tn is the same as the characteristic polynomial
over F2 of Tn.

(ii) All irreducible polynomials over F2 are CA-polynomials. And there
are exactly two 90/150 CA corresponding to any irreducible polyno-
mial.

Cattell et al. [3] proposed a method to find 90/150 CA corresponding to a
given irreducible polynomial. However, their method is limited to irreducible
polynomials only. So it is impossible to generate 90/150 CA corresponding to
reducible polynomials by their method. Cho et al. [4] proposed an efficient
method for the synthesis of 90/150 linear CA. They reduced the complexity of
the synthesis algorithm from O(n7) to O(n2). Algorithm 1 is the 90/150 CA
synthesis algorithm proposed in [4].

In the proposed algorithm, TU = UC since the state transition matrix T
of a 90/150 CA and the companion matrix C corresponding to characteris-
tic polynomial f (x) over F2 of T are similar. In Step 2, for a solution v of
Bv = (0, · · · , 0, 1)T , f (x) is a CA-polynomial if H = K (CT , v) has an LU
decomposition.

Algorithm 1 SynthesisOf90/150LinearHybridCA
Input : The characteristic polynomial f (x) = xn + qn−1xn−1 + · · · +

q1x + q0 over F2 of degree n
Output : 90/150 CA rule
Step1 : Make the matrix B which is the n × n matrix obtained by reducing

the n polynomials xi−1 + x2i−1 + x2i (mod f (x)) (i = 1, 2, · · · , n).
Step2 : Solve the equation Bv = (0, · · · , 0, 1)T . If the equation has no

solution, then f (x) is not a CA-polynomial. STOP.
Step3 : Construct a Krylov matrix H = K (CT , v) by the seed vector v =

(v1, v2, · · · , vn)T which is a solution of the equation in Step 2.
Step4 : Compute the LU decomposition H = LU . If the first entry v1 of

the solution v is 0, then LU decomposition is impossible. Stop.
Step5 : Compute 90/150 CA for f (x) by the matrix U = (ui, j )n×n .⎧⎨

⎩
d1 = u1,2

di = ui−1,i + ui,i+1(i = 2, 3, · · · , n − 1)
dn = un−1,n + qn−1

(2.3)

The self-reciprocal polynomial may or may not be a CA-polynomial.
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Example 2.2.

(i) For the irreducible polynomial f4(x) = x4 + x3 + x2 + x + 1 over
F2, let B be the 4 × 4 matrix obtained by coefficients of the 4
polynomials xi−1 + x2i−1 + x2i (mod f4(x)) (i = 1, 2, 3, 4). Then

B =

⎛
⎜⎜⎝

1 1 1 0
1 0 1 0
1 1 1 0
0 0 1 0

⎞
⎟⎟⎠. The two solutions of Bv = (0, 0, 0, 1)T

are v1 = (1, 0, 1, 0)T and v2 = (1, 0, 1, 1)T . The Krylov matrix
H = K (CT , v1) by the seed vector v1 = (1, 0, 1, 0)T is H =⎛
⎜⎜⎝

1 0 1 0
0 1 0 0
1 0 0 1
0 0 1 0

⎞
⎟⎟⎠. The LU decomposition of H is H = LU, where

L =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
1 0 1 0
0 0 1 1

⎞
⎟⎟⎠ and U =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠.

Every first superdiagonal entries of U are (u12, u23, u34) =
(0, 0, 1). Thus d1 = u12 = 0, d2 = u12 + u23 = 0, d3 = u23 + u34 =
1, d4 = u34 + q3 = 0. Here q3 is the coefficient of x3 for f4(x). Thus
the 90/150 CA corresponding to f4(x) is T =< 0, 0, 1, 0 >. Using
the seed vector v2 = (1, 0, 1, 1)T , the 90/150 CA corresponding to
f4(x) is T =< 0, 1, 0, 0 >. Thus two 90/150 CA corresponding to
f4(x) are < 0, 0, 1, 0 > and < 0, 1, 0, 0 >.

(ii) For reducible polynomial f6(x) = x6 + x5 + x4 + x3 + x2 + x + 1
over F2, let B be the 6 × 6 matrix obtained by coefficients of the
6 polynomials xi−1 + x2i−1 + x2i (mod f6(x)) (i = 1, 2, 3, 4, 5, 6).
Then

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
0 1 0 1 1 0
1 1 0 1 1 0
1 1 0 1 0 0
0 0 1 1 1 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Since there is no v such that Bv = (0, 0, 0, 0, 0, 1)T , f6(x) is not a
CA-polynomial.

Definition 2.3 [5]. Let Tn =< d1, d2, · · · , dn > be the state transition matrix
of an n-cell 90/150 CA. Then the m-cell 90/150 CA with the following two



352 UN-SOOK CHOI et al.

state transition matrices are called the 90/150 CA with symmetrical transi-
tion rule.

{
T2n =< d1, · · · , dn−1, dn, dn, dn−1, · · · , d1 >, m = 2n
T2n+1 =< d1, d2, · · · , dn, d, dn, · · · , d2, d1 >, m = 2n + 1

Definition 2.4 [9]. For the polynomial f (x) = xn + an−1xn−1 + · · · +
a1x + a0 over F2 of degree n, the weight w( f ) of f is defined to be the num-
ber of terms with nonzero coefficients in f (x).

The polynomial f (x) = xn + xn−1 + · · · + x + 1 over F2 of degree n
with w( f ) = n + 1 is called the polynomial of maximum weight. Hereafter,
we denote the polynomial of degree n of maximum weight by fn(x).

Theorem 2.5 [6]. The polynomial fn(x) = xn + xn−1 + · · · + x + 1, which
is of weight n + 1, is irreducible over F2 if and only if n + 1 is a prime num-
ber and 2 is a primitive root modulo n + 1.

Example 2.6. Consider the polynomial f4(x) of degree 4. In this case n +
1 = 5 is prime. Since 21 ≡ 2(mod 5), 22 ≡ 4(mod 5), 23 ≡ 3(mod 5) and
24 ≡ 1(mod 5), 2 is a primitive root modulo 5. For the polynomial f6(x)
of degree 6, n + 1 = 7 is prime. Since 23 ≡ 1(mod 7), 2 is not a primitive
root modulo 7. Thus f6(x) = (x3 + x + 1)(x3 + x2 + 1) is reducible. Table
2 shows the irreducibility of the polynomial fn(x) of degree n when n + 1 is

degree n Irreducibility of fn(x)
2 irreducible
4 irreducible
6 (3,2,0)(3,1,0)

10 irreducible
12 irreducible
16 (8,5,4,3,0)(8,7,6,4,2,1,0)
18 irreducible
22 (11,9,7,6,5,1,0)(11,10,6,5,4,2,0)
28 irreducible
30 (5,2,0)(5,3,0)(5,4,3,2,0)(5,4,3,1,0)(5,4,2,1,0)(5,3,2,1,0)
36 irreducible
40 (20,18,17,16,15,14,11,10,9,6,5,4,3,2,0)

(20,19,17,16,14,11,10,9,6,4,3,1,0)
42 (14,11,10,9,8,7,6,5,4,3,0)(14,12,10,7,4,2,0)(14,13,11,7,3,1,0)
46 (23,19,18,14,13,12,10,9,7,6,5,3,2,1,0)

(23,22,21,20,18,17,16,14,13,11,10,9,5,4,0)

TABLE 2
Factorization of polynomial of degree n of maximum weight
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prime, where n ≤ 50. The polynomials are represented by listing their non-
zero coefficients. For example, (3,2,0) represents the polynomial x3+x2+1.
Also (3, 2, 0)(3, 1, 0) represents the polynomial (x3 + x2 + 1)(x3 + x + 1).

3 ANALYSIS OF 90/150 CA CORRESPONDING TO
POLYNOMIAL OF MAXIMUM WEIGHT

First, we analyze the characteristic polynomial of 90/150 CA synthesized by
90/150 CA with symmetric transition rule by the following theorem.

Lemma 3.1 [5]. Let �n be the characteristic polynomial over F2 of Tn =<

d1, d2, · · · , dn >. Then the characteristic polynomial c2n+1(x) of (2n + 1)-
cell 90/150 CA T2n+1 =< d1, d2, · · · , dn, d, dn, · · · , d2, d1 > with symmetric
transition rule is (x + d)�2

n.

Proof. By cofactor expansion along the (n + 1)th row of c2n+1(x) =
|T2n+1 ⊕ x I2n+1|, we have

c2n+1(x) = 1 · �n−1�n + (x + d)�2
n + 1 · �n�n−1 = (x + d)�2

n.

Theorem 3.2. fn(x) is a CA-polynomial if and only if f2n+1(x) is a CA-
polynomial.

Proof. If fn(x) is a CA-polynomial, then there exists a 90/150 CA Tn cor-
responding to fn(x). Since f2n+1(x) = (x + 1)[ fn(x)]2, we can construct
the (2n + 1)−cell 90/150 CA < Tn, 1, T ∗

n > whose characteristic polyno-
mial is f2n+1(x) = (x + 1)[ fn(x)]2 by Lemma 3.1. Thus f2n+1(x) is a CA-
polynomial. Conversely, let f2n+1(x) be a CA-polynomial. Then there exists
a (2n + 1)−cell 90/150 CA < a1, · · · an, d, bn, · · · , b1 >. The character-
istic polynomial of < a1, · · · an, d, bn, · · · , b1 > is V2n+1(x) = �n−1∇n +
(x + d)�n∇n + �n∇n−1, where �n is the characteristic polynomial of <

a1, · · · , an > and ∇n is the characteristic polynomial of < b1, · · · , bn >.
Since f2n+1(x) = (x + 1)[ fn(x)]2, d = 1 and �n = ∇n . Therefore ai = bi

(i = 1, · · · , n). Thus < a1, · · · , an > is an n-cell 90/150 CA corresponding
to fn(x). Hence fn(x) is a CA-polynomial.

Corollary 3.3. The number of 90/150 CA corresponding to f2n+1(x) is the
same as the number of 90/150 CA corresponding to fn(x).

By Theorem 3.2, we can reduce the time to synthesize a CA from O(n2)
to O(log2n) by synthesizing the (2n + 1)-cell 90/150 CA with symmetric



354 UN-SOOK CHOI et al.

transition rule using the n-cell 90/150 CA. In Example 2.2(ii), since f6(x) is
not a CA-polynomial, f13(x), f27(x), f55(x), · · · are not CA-polynomials.

Now we give a method of determining whether fn(x) over F2 is a CA-
polynomial or not. Also we give a method of determining the number of
90/150 CA corresponding to fn(x).

Case (i): n = 2m + 1:
In this case, if fm(x) is a CA-polynomial, then fn(x) is a CA-polynomial and
Tn =< Tm, 1, T ∗

m > by Theorem 3.2, where Tm =< d1, d2, · · · , dm > is the
90/150 CA corresponding to fm(x) and T ∗

m =< dm, · · · , d2, d1 >. Thus the
number of 90/150 CA corresponding to fn(x) is the same as the number of
90/150 CA corresponding to fm(x) by Corollary 3.3.

In Example 2.2(i), since 90/150 CA corresponding to f4(x) are <

0, 0, 1, 0 > and < 0, 1, 0, 0 >, 90/150 CA corresponding to f9(x) are <

0, 0, 1, 0, 1, 0, 1, 0, 0 > and < 0, 1, 0, 0, 1, 0, 0, 1, 0 >.
Specifically, when n = 2k − 1, the 90/150 CA corresponding to fn(x) can

be synthesized from the 90/150 CA T1 =< 1 > corresponding to f1(x) =
x + 1. That is, Tn = T2k−1 =< 1, · · · , 1 >. Thus the 90/150 CA correspond-
ing to f2k−1(x) = (1 + x)2k−1(k = 1, 2, · · ·) is unique.

Case (i i): n = 2m:
For the characteristic polynomial �n over F2 of the state transition matrix
T =< d1, d2, · · · , dn > of an n-cell 90/150 CA, the following recurrence
relation holds [3]:

�n = (x + dn)�n−1 + �n−2, (�0 = 1,�−1 = 0) (3.1)

The relation between the 90/150 CA rule and the continued fraction is as
follows. Using Euclid’s algorithm for �n and �n−1, we can express equation
(3.1) as a finite continued fraction of �n−1

�n
as equation (3.2):

�n−1

�n
= 1

(x + dn) + 1
(x+dn−1)+ 1

...

(3.2)

Here, x + di is the partial quotient of the finite continued fraction and the
constant term of the partial quotient is the transition rule of the i th cell of the
90/150 CA. As an example, the 90/150 CA corresponding to f4(x)(:= �4) is
< 0, 1, 0, 0 > and �3 = x3 + x2. The continued fraction of �3

�4
is as follows:

�3

�4
= x3 + x2

x4 + x3 + x2 + x + 1
= 1

x + 1
x+ 1

(x+1)+ 1
x
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For fn(x) to be a CA-polynomial, there must be a polynomial �n−1 of degree
n − 1 for which the partial quotients of the continued fraction expansion of
fn(x) all have degree one. But it is very difficult to find such a �n−1.

A method for determining whether fn(x) is a CA-polynomial or not is
as follows. (i) For the case fn(x) (n = 2m) is irreducible, fn(x) is a CA-
polynomial [2, 4].
(ii) For the case fn(x) (n = 2m) is reducible:
To obtain the 90/150 CA for the given fn(x), we make the n × n
matrix B obtained by coefficients of the n polynomials xi−1 + x2i−1 +
x2i (mod fn(x)) (i= 1, 2, · · · , n) and solve the equation Bv = (0, · · · , 0, 1)T .
In addition, we construct the Krylov matrix H = K (CT , v) using the solution
v of the equation Bv = (0, · · · , 0, 1)T . In this case, H = K (CT , v) has an LU
decomposition provided that the first component of v = (v1, v2, · · · , vn)T is
always 1. Thus we obtain ui,i+1(i = 1, · · · , n − 1) from U and thus obtain
< d1, · · · , dn > using (2.3). Therefore to be fn(x) a CA-polynomial, Bv =
(0, · · · , 0, 1)T must have a solution. This means that rank(B) = rank(B|en),
where en = (0, · · · , 0, 1)T .

In Example 2.2, since rank(B) = rank(B|e4) = 3, f4(x) is a CA-
polynomial. But since rank(B) = 4 �= 5 = rank(B|e6), f6(x) is not a CA-
polynomial.

Now we propose the method of finding the number of 90/150 CA corre-
sponding to a given CA-polynomial fn(x).

Theorem 3.4. Let f2m(x) be a reducible polynomial. Then f2m(x) is the
product of different irreducible polynomials.

Proof. Since x2m+1 − 1 = ∏
d|2m+1�d (x) where �d (x) is a d-th cyclotomic

polynomial [9] and x2m+1 − 1 = (x + 1) f2m(x),

f2m(x) =
∏

d|2m+1,d �=1

�d (x)

It is well-known that �d (x) is an irreducible polynomial or the product of
different irreducible polynomials. Also, if d1 �= d2 (d1|2m + 1, d2|2m + 1),
then the factors of �d1 (x) and �d2 (x) are all different irreducible polynomi-
als. Hence f2m(x) is the product of different irreducible polynomials.

Example 3.5. Let n = 32. Then x33 − 1 = ∏
d|33 �d (x). Since 33 = 3 × 11,

f32(x) = �3(x) · �11(x) · �33(x). Here �3(x) = f2(x) and �11(x) = f10(x)
are irreducible polynomials, and �33(x) = (x10 + x9 + x5 + x + 1)(x10 +
x7 + x5 + x3 + 1). Hence f32(x) is the product of 4 different irreducible
polynomials.
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Theorem 3.6. Let fn(x)(n : even) be a CA-polynomial and let fn(x) =∏k
i=1 hi (x), where hi (x) is an irreducible polynomial (i = 1, 2, · · · , k). Then

the number of 90/150 CA corresponding to fn(x) is 2k .

Proof. Since n is even, fn(0) �= 0 and fn(1) �= 0. Thus hi (x) is a polyno-
mial of degree at least two. Also for i , j(i �= j), hi (x) and h j (x) are dif-
ferent irreducible polynomials by Theorem 3.4. Let deg(hi (x)) = di and
Bi be the di × di matrix obtained by reducing the di polynomials xa−1 +
x2a−1 + x2a (mod hi (x)) (a = 1, · · · , di ). Let ui = (ui

1, ui
2, · · · , ui

di
) be the

solution of ui Bi = O and ri (x) = ui
1 + ui

2x + · · · + ui
di

xdi −1. Then ri (x){1 +
ri (x)(x2 + x)} ≡ 0(mod hi (x)). Since hi (x) is irreducible (i = 1, · · · , k),
ri (x) ≡ 0(mod hi (x)) or ri (x) is the inverse of x2 + x(mod hi (x)). Let
Hi (x) = h1(x) · · · hi−1(x)hi+1(x) · · · hk(x). Then gcd(hi (x), Hi (x)) = 1 for
each i . Let r (x) = ∑k

i=1 ri (x)Hi (x)Hi (x)−1. Then r (x){1 + r (x)(x2 + x)} ≡
0 (mod fn(x)) by Chinese Remainder Theorem. Therefore the number of
r (x) is 2k . By the hypothesis, fn(x) is a CA-polynomial. Thus Bv = en must
have solutions where B is the n × n matrix obtained by reducing the n poly-
nomials xa−1 + x2a−1 + x2a (mod fn(x)) (a = 1, · · · , n). Now the number
of v is equal to the number of u where u = (u1, u2, · · · , un) is the solution
of uB = O . Also the number of u is equal to the number of r (x). Hence the
number of the 90/150 CA corresponding to fn(x) is 2k .

Corollary 3.7. Let fn(x)(n : even) be a CA-polynomial and let fn(x) =∏k
i=1 hi (x), where hi (x) is an irreducible polynomial of deg(hi (x)) ≥ 2 (i =

1, 2, · · · , k). And let B be the n × n matrix obtained by coefficients of
the n polynomials xi−1 + x2i−1 + x2i (mod fn(x)) (i = 1, 2, · · · , n). Then
rank(B) = n − k.

Example 3.8. Consider f8(x) = x8 + · · · + x + 1. The 8 × 8 matrix B
obtained by coefficients of the 8 polynomials xi−1 + x2i−1 + x2i (mod f8(x))
(i = 1, 2, · · · , 8) is

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0
0 0 1 0 0 1 1 0
1 1 1 0 1 1 1 0
1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since f8(x) = (x2 + x + 1)(x6 + x3 + 1), rank(B) = 8 − 2 = 6 by Corol-
lary 3.7. The solution of Bv = (0, 0, 0, 0, 0, 0, 0, 1)T is v = (1, α, 1 +
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α β v = (1, α, 1 + α, 1, 1 + α, α, 1, β)T 90/150 CA
0 0 v0 = (1, 0, 1, 1, 1, 0, 1, 0)T < 01110110 >

0 1 v1 = (1, 0, 1, 1, 1, 0, 1, 1)T < 01101110 >

1 0 v2 = (1, 1, 0, 1, 0, 1, 1, 0)T < 10110101 >

1 1 v3 = (1, 1, 0, 1, 0, 1, 1, 1)T < 10101101 >

TABLE 3
90/150 CA corresponding to f8(x)

α, 1, 1 + α, α, 1, β)T , where α, β ∈ {0, 1}. By Algorithm 1, we obtain the
90/150 CA corresponding to α and β which are shown in Table 3.

4 CONCLUSION

The self-reciprocal polynomials over F2 are useful in several applications.
In this paper, we analyzed the 90/150 CA C corresponding to self-reciprocal
polynomial fn(x) = xn + xn−1 + · · · + x + 1 of maximum weight and gave
a method of determining whether fn(x) is a CA-polynomial or not using the
rank of the matrix obtained by reducing the n polynomials xi−1 + x2i−1 +
x2i (mod fn(x)) (i = 1, 2, · · · , n) . Also we gave a method of determining the
number of 90/150 CA corresponding to fn(x) by using factorization of fn(x)
and Chinese Remainder Theorem. And we proposed the synthesis method for
C using the synthesis algorithm proposed by Cho et al. [4].

REFERENCES

[1] A.F-Sabater and P.C-Gil. (2009). Synthesis of cryptographic interleaved sequences by
means of linear cellular automata. Applied Mathematics Letters, 22:1518–1524.

[2] K.M. Cattell and J.C. Muzio. (1996). Analysis of one-dimensional linear hybrid cellular
automata over GF(q). IEEE Trans. Comput-Aided Design Integr. Circuits Syst., 45:782–
792.

[3] K.M. Cattell and J.C. Muzio. (1996). Synthesis of one-dimensional linear hybrid cellular
automata. IEEE Trans. Comput-Aided Design Integr. Circuits Syst., 19:325–335.

[4] S.J. Cho, U.S. Choi, H.D. Kim, Y.H. Hwang, J.G. Kim, and S.H. Heo. (2007). New
synthesis of one-dimensional 90/150 linear hybrid group cellular automata. IEEE Trans.
Comput-Aided Design Integr. Circuits Syst., 26:1720–1724.

[5] U.S. Choi, S.J. Cho, and Gil-Tak Kong. (2015). Analysis of characteristic polynomial of
cellular automata with symmetrical transition rules. Proceedings of the Jangjeon Mathe-
matical Society, 18:85–93.

[6] L.E. Dickson. (1958). Linear Groups: With an Exposition of the Galois Field Theory.
Dover Publications Inc., New York.

[7] S.J. Hong and D.C. Bossen. (1975). On some properties of self-reciprocal polynomials.
IEEE Trans. Infor. Thy., IT-21:462–464.



358 UN-SOOK CHOI et al.

[8] J.L.Yucas and G.L. Mullen. (2004). Self-reciprocal irreducible polynomials over finite
fields. Design, Codes and Cryptography, 33:275–281.

[9] R. Lidl and H. Niederreiter. (1997). Finite fields, 2nd edition. Cambridge University Press.

[10] H. Meyn. (1990). On the construction of irreducible self-reciprocal polynomials over finite
fields. Appl. Alg. in Eng., Comm., and Comp., 1:43–53.

[11] J.V. Neumann. (1966). The theory of self-reproducing automata, Burks, A.W. (Ed.). Uni-
versity of Illinois Press.

[12] V. Pless. (1998). Introduction to the theory of error-correcting codes, 3rd edition. Wiley-
Interscience.

[13] S. Roy, S. Nandi, J. Dansana, and P.K. Pattnaik. (2014). Application of cellular automata
in symmetric key cryptography. IEEE International Conference on Communication and
Signal Processing, 114:572–576.

[14] S. Wolfram. (1983). Statistical mechanics of cellular automata. Rev. Modern Physics,
66:601–644.


