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In this paper, we analyze the 90/150 CA C corresponding to self-
reciprocal polynomial fn(x) = X"+ x"1 + ... +x + 1 of maximum
weight and give a method of determining whether f,(x) is a CA-
polynomial or not. Also we give a method of determining the number
of 90/150 CA corresponding to f,(x) and propose the synthesis method
for C using the synthesis algorithm proposed by Cho et al. [4].
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1 INTRODUCTION

Let F, denote the finite field containing 2 elements. The reciprocal f*(x) of
a polynomial f(x) of degree n over F; is defined by f*(x) = x" f(1/x). The
polynomial f(x) is called self-reciprocal if f*(x) = f(x). For many years,
many researchers have analyzed several self-reciprocal irreducible polynomi-
als over finite fields [8, 10]. The self-reciprocal polynomials over finite fields
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FIGURE 1
State transition of LFSR and 90/150 CA with maximum length

are useful in several applications such as cyclic error correcting codes and
reversible codes with read-backward properties [7,12].

Cellular Automata(CA) were originally introduced by Von Neumann in
early 1950’s in order to study the logical properties of self-reproducing
machines [11]. Wolfram in early 1980’s suggested a simplified two-state
three-neighborhood 1-D CA with cells arranged linearly in one dimension
[14]. CA has a simple, regular, modular and cascadable structure with log-
ical neighborhood interconnection. The simple structure of CA with logi-
cal interconnections is ideally suited for hardware implementation. The bit
sequences generated by 90/150 CA are superior to the bit sequences gener-
ated by LFSR in that there is no correlation. Figure 1 shows the state transi-
tion of LFSR and 90/150 CA corresponding to the characteristic polynomial
x26 4 x10 4+ x5 4+ x2 + 1 over F, which is primitive. Figure 1 (a) shows
the state transition of LFSR and Figure 1 (b) shows the state transition of
90/150 CA. In Figure 1, sites with value 1 are represented by black, and
those with value 0 by white. Figure 1 shows that the state transition of the
90/150 CA with the same characteristic polynomial as the LFSR is superior
to the LFSR in randomness and diffusion properties. CA has better random-
ness than LFSR, but its synthesis method is more difficult than that of LFSR.
For this reason, many researchers have proposed methods to synthesize CA
suitable for various applications [1, 13]. Cattell et al. [3] studied the synthe-
sis of 90/150 linear CA corresponding to irreducible polynomials suitable for
test pattern generation. Cho et al. [4] then proposed a more efficient synthesis
algorithm. And Cho et al. studied the synthesis of 90/150 CA corresponding
to the power of irreducible polynomials applicable to the keystream generator
in the stream cryptosystem.

In this paper, we analyze 90/150 CA C corresponding to self-reciprocal
polynomial fn(x) = x" 4+ x""% 4+ ... 4+ x + 1 over F, of maximum weight
and give a method of determining whether f,(x) is a CA-polynomial or not.
Also we give a method of determining the number of 90/150 CA correspond-
ing to f,(x) and propose the synthesis method for C using the synthesis algo-
rithm proposed by Cho et al. [4].
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rule number Linear transition rule

60 §t+l _ §t71 ® 5\1t
90 st=d o5,

102 §t+l _ s1t @ SitH

150 st=d 0908,

170 S1t+1 _ §t+l

204 S1t+1 _ S1t

240 81t+1 _ #71

TABLE 1

Linear rule with XOR logic

2 CA PRELIMINARIES

When the state transition function R, applied to the ith cell of a CA is repre-
sented by XOR logic, R; is referred to as a linear transition rule.

§T =R .. s ) =as @bs@cs,; (abcef0 1) (21)

Table 1 shows the linear transition rules. In Table 1, s' denotes the state of
the ith CA cell at the time of instant t, s'_; and s, refer to the state of the
left and right neighbors. A CA with all the cells having linear rules is called
alinear CA. A linear CA can represent a state transition function as a matrix,
which is called a state transition matrix.

In particular, the state transition matrix of 90/150 CA is a tridiago-
nal matrix as shown in Equation (2.2) and is simply expressed as T =<
di, do, -+, dy >, where

4 — 0, ifcelli usesrule 90
"7 11, ifcelli uses rule 150

dg 1 0 0 --- 0 O 0
1 d 1 0 --- 0 O 0
0 1 dg 1 --- 0 O
T=1. . . . . . . . (2.2)
0 0 0 0 -+ 1 dy1 1
o 0o 00 ---0 1 d

The characteristic polynomial c(x) over F, of an n-cell linear CA C is defined
by c(x) = |T @ xI,|, where T is the state transition matrix of the CA. The
minimal polynomial of C is the polynomial m(x) of least degree such that
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m(T) = O. A polynomial is said to be a CA-polynomial if it is the character-
istic polynomial of some 90/150 CA [3]. The following is well known.

Theorem 2.1 [2].

(i) For any n-cell 90/150 CA whose state transition matrix is T,, the
minimal polynomial of T, isthe same asthe characteristic polynomial
over F, of T,,.

(ii) All irreducible polynomials over F, are CA-polynomials. And there
are exactly two 90/150 CA corresponding to any irreducible polyno-
mial.

Cattell et al. [3] proposed a method to find 90/150 CA corresponding to a
given irreducible polynomial. However, their method is limited to irreducible
polynomialsonly. Soit isimpossible to generate 90/150 CA corresponding to
reducible polynomials by their method. Cho et al. [4] proposed an efficient
method for the synthesis of 90/150 linear CA. They reduced the complexity of
the synthesis algorithm from O(n”) to O(n?). Algorithm 1 is the 90/150 CA
synthesis algorithm proposed in [4].

In the proposed algorithm, TU = U C since the state transition matrix T
of a 90/150 CA and the companion matrix C corresponding to characteris-
tic polynomial f(x) over F, of T are similar. In Step 2, for a solution v of
Bv=(0,---,0,1)7, f(x) is a CA-polynomial if H = K(CT, v) has an LU
decomposition.

Algorithm 1 SynthesisOf90/150LinearHybridCA

Input : The characteristic polynomial f(X) = X" + Qn_1X" 1 4+--- +
X + qo over F, of degree n

Output : 90/150 CA rule

Stepl : Make the matrix B which is the n x n matrix obtained by reducing
the n polynomials x'~* 4+ x?~1 4+ x?(mod f(x)) (i =1,2,---,n).

Step2 : Solve the equation Bv = (0, - --, 0, 1)". If the equation has no
solution, then f(x) is not a CA-polynomial. STOP.

Step3 : Construct a Krylov matrix H = K(CT, v) by the seed vector v =
(v1, v, - - -, vy)T which is a solution of the equation in Step 2.

Step4 : Compute the LU decomposition H = LU. If the first entry v, of
the solution v is 0, then LU decomposition is impossible. Stop.

Step5 : Compute 90/150 CA for f(x) by the matrix U = (Uj j)nxn.

di =uy
d =U_1i+Uinui=23--,n-1) (2.3)
Oy = Un—1.n + Qs

The self-reciprocal polynomial may or may not be a CA-polynomial.
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Example 2.2.

(i) For the irreducible polynomial f4(x) = x* 4+ x3 +x% + x 4 1 over
F,, let B be the 4 x 4 matrix obtained by coefficients of the 4
polynomials x'~! 4+ x?~1 4+ x?(mod f4(x)) (i =1,2,3,4). Then

1 10

01 0

1 10

0 010
are vi =(1,0,1,0)" and v, =(1,0,1,1)". The Krylov matrix

H = K(CT,vy) by the seed vector v;=(1,0,1,0)7 is H =

[EEN

. The two solutions of Bv =(0,0,0,1)"

1 010
01 00 " .
100 1| The LU decomposition of H is H = LU, where
0 010
1 00O 1 010
01 00 01 00
L=11010[|®Y=|0011
0 011 0 0 01

Every first superdiagonal entries of U are (Ui, Ups, U3g) =
(0,0,1). Thus dy = u3;2 =0,d, = Ujp + U3 = 0, d3 = Upz + Uzg =
1,ds = uzs + g3 = 0. Here gz is the coefficient of x3 for f4(x). Thus
the 90/150 CA corresponding to f4(x) isT =< 0,0,1,0 >. Using
the seed vector v, = (1,0, 1,1)", the 90/150 CA corresponding to
f4(x) isT =< 0,1,0,0 >. Thus two 90/150 CA corresponding to
fs(x)are< 0,0,1,0>and < 0,1,0,0 >.

(i) For reducible polynomial fg(x) = x® + x>+ x* +x3 +x2 +x+1
over F,, let B be the 6 x 6 matrix obtained by coefficients of the
6 polynomials x'~* + x?~1 + x?(mod fs(x)) (i =1,2,3,4,5,6).
Then

OO R Rk OR
COoORrR R RR
Or oo or
OFR LR REPRELO
PP OR PO
oo oooo

Since there is no v such that Bv = (0,0, 0,0,0, 1)T, fs(x) isnot a
CA-polynomial.

Definition 2.3 [5]. Let T, =< di, dy, - - -, dy > bethe state transition matrix
of an n-cell 90/150 CA. Then the m-cell 90/150 CA with the following two
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state transition matrices are called the 90/150 CA with symmetrical transi-
tionrule.

T2n =< dl’ Tty dn—ly dn, dn, dn—17 Tty dl >, m= 2n

T2n+1 =< dlad25"'adnyd’drh.”vdZvdl >, m=2n+1
Definition 2.4 [9]. For the polynomial f(x) = x" +a,_1x" 1 4+ ... +
X + ag over F, of degree n, the weight w( f) of f isdefined to be the num-
ber of terms with nonzero coefficientsin f(x).

The polynomial f(x) = x"+x"1+...+x+ 1 over F, of degree n
with w(f) = n+ 1 is called the polynomial of maximum weight. Hereafter,
we denote the polynomial of degree n of maximum weight by f,(x).

Theorem 2.5 [6]. The polynomial f,(x) = x" +x"% + ... +x + 1, which
isof weight n + 1, isirreducible over F; if and only if n + 1 isa prime num-
ber and 2 isa primitive root modulon + 1.

Example 2.6. Consider the polynomial f4(x) of degree 4. In thiscase n +
1 =5 is prime. Snce 2! = 2(mod 5), 22 = 4(mod 5), 2° = 3(mod 5) and
24 = 1(mod 5), 2 is a primitive root modulo 5. For the polynomial fg(x)
of degree 6, n+ 1 =7 is prime. Since 2% = 1(mod 7), 2 is not a primitive
root modulo 7. Thus fg(X) = (x° + x + 1)(x® 4+ x? + 1) is reducible. Table
2 shows the irreducibility of the polynomial f,(x) of degree n whenn 4 1is

degree n Irreducibility of f,(x)
2 irreducible
4 irreducible
6 (3,2,0)(3,1,0)
10 irreducible
12 irreducible
16 (8,5,4,3,0)(8,7,6,4,2,1,0)
18 irreducible
22 (11,9,7,6,5,1,0)(11,10,6,5,4,2,0)
28 irreducible
30 (5,2,0)(5,3,0)(5,4,3,2,0)(5,4,3,1,0)(5,4,2,1,0)(5,3,2,1,0)
36 irreducible
40 (20,18,17,16,15,14,11,10,9,6,5,4,3,2,0)
(20,19,17,16,14,11,10,9,6,4,3,1,0)
42 (14,11,10,9,8,7,6,5,4,3,0)(14,12,10,7,4,2,0)(14,13,11,7,3,1,0)
46 (23,19,18,14,13,12,10,9,7,6,5,3,2,1,0)
(23,22,21,20,18,17,16,14,13,11,10,9,5,4,0)

TABLE 2
Factorization of polynomial of degree n of maximum weight
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prime, where n < 50. The polynomials are represented by listing their non-
zero coefficients. For example, (3,2,0) represents the polynomial x3+x24-1.
Also (3, 2, 0)(3, 1, 0) represents the polynomial (x® + x2 + 1)(x® + x + 1).

3 ANALY SIS OF 90/150 CA CORRESPONDING TO
POLYNOMIAL OF MAXIMUM WEIGHT

First, we analyze the characteristic polynomial of 90/150 CA synthesized by
90/150 CA with symmetric transition rule by the following theorem.

Lemma 3.1 [5]. Let A, be the characteristic polynomial over F, of T, =<
di, dy, - - -, dy >. Then the characteristic polynomial ¢;n.1(x) of (2n + 1)-
cell 90/150 CA T2n+l =< dl, dg, CIUEIN dn, d, dn, SN dg, d1 > with wmmetric
trangition ruleis (x + d)AZ2.

Proof. By cofactor expansion along the (n+ 1)th row of cyn1(X) =
| Tont1 @ Xl2nt1], we have

Cony1(X) =1- ApaAp+ (X + d)Aﬁ +1-ApApg =X+ d)Arzr U

Theorem 3.2. fy(x) is a CA-polynomial if and only if f,,.1(X) is a CA-
polynomial.

Proof. If f,(x) is a CA-polynomial, then there exists a 90/150 CA T, cor-
responding to f,(x). Since fany1(X) = (X + 1)[ fa(X)]?, we can construct
the (2n 4 1)—cell 90/150 CA < T,, 1, T} > whose characteristic polyno-
mial is fon,1(X) = (X + [ fa(X)]? by Lemma 3.1. Thus fon,1(X) is a CA-
polynomial. Conversely, let f,,.1(x) be a CA-polynomial. Then there exists
a (2n+ 1)—cell 90/150 CA < ay,---an,d, by, ---, by >. The character-
istic polynomial of < ay,---an,d, by, -+, b1 > IS Voni1(X) = A1V +
(X + d)AnVn + AnVin_1, Where Ay is the characteristic polynomial of <
&, --,8, > and V, is the characteristic polynomial of < by, ---, by >.
Since fan1(X) = (X + D[ fa(X)]%, d =1 and A, = V,,. Therefore a = by
(i=1---,n). Thus < a,---, a, > is an n-cell 90/150 CA corresponding
to fn(x). Hence f,(x) is a CA-polynomial. 0

Corollary 3.3. The number of 90/150 CA corresponding to fyny1(X) isthe
same as the number of 90/150 CA corresponding to f(x).

By Theorem 3.2, we can reduce the time to synthesize a CA from O(n?)
to O(logyn) by synthesizing the (2n + 1)-cell 90/150 CA with symmetric
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transition rule using the n-cell 90/150 CA. In Example 2.2(ii), since fg(x) is
not a CA-polynomial, fi3(x), f27(X), fs5(X), - - - are not CA-polynomials.

Now we give a method of determining whether f,(x) over F, is a CA-
polynomial or not. Also we give a method of determining the number of
90/150 CA corresponding to f,(x).

Case (i):n=2m+1:

In this case, if f(X) is a CA-polynomial, then f,(x) is a CA-polynomial and
Ty =< Tm, 1, T, > by Theorem 3.2, where T, =< di, dy, - - -, dyy > is the
90/150 CA corresponding to fy(x) and T; =< dm, - - -, d2, dp >. Thus the
number of 90/150 CA corresponding to f,(x) is the same as the number of
90/150 CA corresponding to f,(x) by Corollary 3.3.

In Example 2.2(i), since 90/150 CA corresponding to f4(x) are <
0,0,1,0 > and <0,1,0,0 >, 90/150 CA corresponding to fg(x) are <
0,0,1,0,1,0,1,0,0>and <0,1,0,0,1,0,0,1,0 >.

Specifically, when n = 25 — 1, the 90/150 CA corresponding to f,(x) can
be synthesized from the 90/150 CA T; =< 1 > corresponding to fi(x) =
X+ 1. Thatis, T, = Tx_y =< 1, ---, 1 >. Thus the 90/150 CA correspond-
ingto fa_1(x) = (1 +x)2 Yk =1,2,--)is unique.

Case (ii):n=2m:
For the characteristic polynomial A, over F, of the state transition matrix

T =<d,dy, -+, dy > of an n-cell 90/150 CA, the following recurrence
relation holds [3]:

An == (X + dn)An_]_ + An_z, (AO == 1, A_j_ == 0) (3.1)

The relation between the 90/150 CA rule and the continued fraction is as
follows. Using Euclid’s algorithm for A, and Anh_1, we can express equation
(3.1) as a finite continued fraction of AA"—: as equation (3.2):

An7]_ 1

An X+ do)+ (3.2

1
(X+0h_1)+-1

Here, x 4+ d; is the partial quotient of the finite continued fraction and the
constant term of the partial quotient is the transition rule of the ith cell of the
90/150 CA. As an example, the 90/150 CA corresponding to f4(X)(:= A4) is
<0,1,0,0 > and Az = x3 4+ x2. The continued fraction of ﬁ—j is as follows:

Az x3 + x2 _ 1
Ag XXX Ex+1 T x4 —L

oD+ &
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For fn(x) to be a CA-polynomial, there must be a polynomial A,_; of degree
n — 1 for which the partial quotients of the continued fraction expansion of
fn(x) all have degree one. But it is very difficult to find such a A,_;.

A method for determining whether f,(x) is a CA-polynomial or not is
as follows. (i) For the case fn(x) (n = 2m) is irreducible, f,(x) is a CA-
polynomial [2,4].

(ii) For the case fn(x) (n = 2m) is reducible:

To obtain the 90/150 CA for the given f,(x), we make the nxn
matrix B obtained by coefficients of the n polynomials x'—! 4+ x?-1 +
x% (mod fn(x)) (i=1,2, ---, n)and solve the equation Bv = (0, - - -, 0, 1)T.
In addition, we construct the Krylov matrix H = K(CT, v) using the solution
v of the equation Bv = (0, ---, 0, 1)". Inthiscase, H = K(C', v) hasan LU
decomposition provided that the first component of v = (vy, vy, - -+, vn)" is
always 1. Thus we obtain u;j+1(i = 1,---,n—1) from U and thus obtain
< dy, -+, dy > using (2.3). Therefore to be f,(x) a CA-polynomial, Bv =
(0, ---, 0, 1) must have a solution. This means that r ank(B) = rank(B|e,),
where g, = (0, ---,0,1)T.

In Example 2.2, since rank(B) =rank(B|e) =3, fs(x) is a CA-
polynomial. But since rank(B) = 4 # 5 = rank(B|e;), fs(x) is not a CA-
polynomial.

Now we propose the method of finding the number of 90/150 CA corre-
sponding to a given CA-polynomial f,(x).

Theorem 3.4. Let f,n(Xx) be a reducible polynomial. Then f(x) is the
product of different irreducible polynomials.

Proof. Since x?™1 —1 = [ Taj2m+1Pa(X) where @g(x) is a d-th cyclotomic
polynomial [9] and x?™! — 1 = (x + 1) fom(X),

me(X) = 1—[ Dy (X)

d2m+1,d1

It is well-known that ®4(x) is an irreducible polynomial or the product of
different irreducible polynomials. Also, if d; # d, (d1|2m+ 1, dz|2m + 1),
then the factors of ®q,(x) and dg,(x) are all different irreducible polynomi-
als. Hence foy(x) is the product of different irreducible polynomials. 0

Example35. Letn = 32. Then x® — 1 = [ 53 Pa(x). Since 33 = 3 x 11,
fa2(X) = P3(X) - P11(X) - P33(X). Here D3(x) = f2(x) and P11(x) = f10(x)
are irreducible polynomials, and ®33(x) = (x*% 4+ x° + x5 4+ x + 1)(x%° +
x" 4+ x5+ x3 +1). Hence f3y(x) is the product of 4 different irreducible
polynomials.
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Theorem 3.6. Let f,(x)(n: even) be a CA-polynomial and let f,(x) =
]_[ik:l h; (x), where h; (x) isanirreducible polynomial (i = 1,2, ---, k). Then
the number of 90/150 CA corresponding to f,(x) is 2.

Proof. Since n is even, f,(0) # 0 and f,(1) ## 0. Thus h;j(x) is a polyno-
mial of degree at least two. Also for i, j(i # j), hi(x) and h;(x) are dif-
ferent irreducible polynomials by Theorem 3.4. Let deg(hi(x)) = d; and
B be the d; x d; matrix obtained by reducing the d; polynomials x3~* +
x%~1 4+ x% (mod hi(x)) (@=1,---,d). Let u = (u}, uj, ---, uly) be the
solution of Ui B; = O andri(x) = U} + UyX + - - - + uly x4~ Thenr; (X){1 +
(X)) (X% + x)} = 0(mod h;(x)). Since h;(x) is irreducible (i =1, ---,K),
ri(x) = 0(mod h;(x)) or ri(x) is the inverse of x?+ x(mod h;(x)). Let
Hi(X) = ha(x) - - - hi—1(X)hi11(X) - - - h(x). Then ged(hi (x), Hi(x)) = 1 for
eachi. Letr(x) = YK, ri () Hi () Hi (x)~2. Then r (x){1 + r (X)(x2 + X)} =
0 (mod fn(x)) by Chinese Remainder Theorem. Therefore the number of
r(x) is 2k. By the hypothesis, f,(x) is a CA-polynomial. Thus Bv = &, must
have solutions where B is the n x n matrix obtained by reducing the n poly-
nomials x3~! 4+ x?2~1 4 x?@ (mod f,(x)) (@ =1, ---,n). Now the number
of v is equal to the number of u where u = (ug, Uy, - - -, uy) is the solution
of uB = O. Also the number of u is equal to the number of r (x). Hence the
number of the 90/150 CA corresponding to f,(x) is 2. O

Corollary 3.7. Let fa(x)(n: even) be a CA-polynomial and let f,(x) =
[T, hi(x), where h; (x) is an irreducible polynomial of deg(hi (x)) > 2 (i =
1,2,---,k). And let B be the n x n matrix obtained by coefficients of
the n polynomials x ! 4+ x%~1 4+ x2 (mod f(x)) (i =1,2,---,n). Then
rank(B) =n —k.

Example 3.8. Consider fg(x) =x®+-.-4+x+ 1. The 8 x 8 matrix B
obtained by coefficients of the 8 polynomials x'~ + x2 1 + x2 (mod fg(x))
(i=12--,8)is

11100000
010110600
001 0011060
B_11101110
11001000
001101600
00001110
0 000O0OOT10

Snce fg(x) = (X? + x 4+ 1)(x® + x® 4 1), rank(B) = 8 — 2 = 6 by Corol-
lary 3.7. The solution of Bv=(0,0,0,0,0,0,0,1)" is v=(1,a,1+
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a | Blv=Cal+a,l,14+a,a 1 p)T 90/150 CA

00 [w=(@0111010" < 01110110 >
01 [wvw=(@01110117 < 01101110 >
1[0 v=(1010110)" < 10110101 >
1[1[v=(1,1010111)T < 10101101 >

TABLE 3
90/150 CA corresponding to fg(x)

a,1,1+a,a,1,8)7, where a, 8 € {0, 1}. By Algorithm 1, we obtain the
90/150 CA corresponding to & and 8 which are shown in Table 3.

4 CONCLUSION

The self-reciprocal polynomials over F, are useful in several applications.
In this paper, we analyzed the 90/150 CA C corresponding to self-reciprocal
polynomial fn(x) = x" + x"! 4 ... + x + 1 of maximum weight and gave
a method of determining whether f,(x) is a CA-polynomial or not using the
rank of the matrix obtained by reducing the n polynomials x'—* 4+ x& -1 +
x%(mod fa(x)) (i =1,2,---,n).Alsowe gave amethod of determining the
number of 90/150 CA corresponding to f,(x) by using factorization of f,(x)
and Chinese Remainder Theorem. And we proposed the synthesis method for
C using the synthesis algorithm proposed by Cho et al. [4].
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