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This article is intended as a companion document to the more focused report 
provided by the author at the 2017 American Education Research Association 
(AERA) Conference as part of the Technology, Instruction, Cognition & 
Learning Special Interest Group’s Symposium on Intelligent Tutoring Sys-
tems (ITSs). Both the AERA talk and this article focus on adaptive instruc-
tional systems (AISs) which are comprised of learners, Intelligent Tutoring 
Systems (ITSs), and external (non-adaptive) instructional environments. AISs 
tailor instructional experiences for individual learners and teams of learners 
based on a model of their learning needs and preferences. An exemplar of an 
AIS is the Generalized Intelligent Framework for Tutoring (GIFT), an open 
source architecture for authoring, delivering, managing, and evaluating AIS 
technologies (tools and methods). This article reviews desired states for AISs 
in the context of enhancements to GIFT capabilities. This article covers a wide 
range of desired states for AISs and their affiliated design goals, challenges, 
and emerging solutions. While we consider the review presented in this paper 
comprehensive, we acknowledge that it is far from exhaustive. Our primary 
goal is to present the state of art, potential, and practice in ITS design in order 
to engage the education and training community in our quest to make AISs 
ubiquitous.
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1 IntRoDuCtIon

Many Intelligent Tutoring Systems (ITSs) are highly effective learning tools 
and provide individually-tailored instruction in well-defined, cognitive task 
domains (e.g., mathematics, physics, or software programming). The adaptive 
instruction provided by ITSs intelligently selects and sequences content, adapts 
feedback, and guides the learner with the goal of optimizing their learning and 
performance. In his meta-analysis on the effectiveness of ITSs, VanLehn (2011) 
notes that ITSs have evolved to parity with expert human tutors. Unfortunately, 
this parity exists in a very limited set of training and educational domains, usually 
mathematics, physics or software programming. If we want future ITSs to be 
ubiquitous instructional tools, there are significantbarriers to overcome. 

This article focuses on significant goals, challenges, and emerging solutions 
related to the development and adoption of ITSs. To this end, we have adopted a 
model of ITSs as part of a functional toolset for authoring, instructional manage-
ment, and evaluation that we call an adaptive instructional system (AIS). The AIS 
concept extends the model of advanced situated tutors proposed by Schatz,  Bowers, 
& Nicholson (2009) by including both runtime (instruction and evaluation) and 
offline functions (e.g., authoring) in an instructional architecture known as the 
 Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Gold-
berg, and Holden, 2012; Sottilare, Brawner, Sinatra, and Johnston, 2017). GIFT is 
being developed with the AIS model in mind and we refer to current and emerging 
capabilities as desired endstates within GIFT. Within the runtime AIS, we consider 
models of the learner(s), the ITS as a tool to manage/guide adaptive instruction, and 
an optional external environment to encourage the reuse of non-adaptive instruc-
tional systems (e.g., simulations, games, web pages) as content providers for the AIS. 

Functionally, the AIS may be distinguished from traditional ITSs by its inter-
actions. For ITSs, the tutoring agent traditionally interacts with a learner and an 
internal expert model to assess the learner’s progress towards one or more learn-
ing objectives. In an AIS, this interaction may also include some external environ-
ment as noted above and shown in Figure 1. AISs also are “self-evaluating” in 
that they review their own performance with respect to their decisions, actions, 
and policies. Figure 1 illustrates these interactions with both the learner and the 
environment where the tutor element of the AIS observes both the learner and the 
environment, applies appropriate policies (e.g., constraints, rules, best practices), 
and then evaluates the effectiveness of those policies. The observations lead to 
decisions by the tutor which lead to actions by the tutor, which lead to an 
 evaluation of effectivess of the policy selected and applied, and finally, leads to 
changes to the policy as required. This is a reinforcement learning system.
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The integration of previously non-adaptive external environments with ITSs 
provide adaptive instruction to learners based on their individual learning needs 
and preferences. The runtime AIS can also be configured for experimentation to 
support the evaluation of learner/instructional/domain models and hypotheses 
testing through the GIFT testbed functionality as derived from Hanks, Pollack, 
and Cohen (1993) and described in Figure 2. Learner attributes, domain attri-
butes, and instructional policies, strategies, and tactics can be manipulated to 
conduct validation experiments to identify the effect of each on individual learn-
ing, performance, retention, and transfer for skills from instructional environ-
ments to work environments. 

In the offline AIS, GIFT authoring processes provide ITS developers with tools 
and methods to organize course/lesson material, sequence blocks of instruction, 
create methods of assessment to determine the learner(s) progress toward learning 
objectives, and associate optimal tutor interactions (e.g., feedback or remediation) 
identified through experimentation with learner behaviors and progress.

AISs, as a concept, may represent a leap forward in the evolution of ITS 
design, but realizing the full potential of the concept is frought with challenges. 
Whereas ITSs are generally standalone systems focused on a single instructional 
domain, AISs are able to link with non-adaptive external environments (e.g., sim-
ulators, simulations, games, Massive Open Online Courses (MOOCs) or web-
pages) to drive adaptations (e.g., changes to difficulty or learner support level) in 

FIGURE 1
Runtime Adaptive Instructional System.
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those environments, and they may do so for a diverse scope of instructional 
domains. With their extended functionality and interaction with external environ-
ments, AISs have the potential to be even more complex than the ITSs that are 
prevalent today. The question is: can AISs be designed with all the benefits of 
adaptive instruction, but with much less of the costs of traditional ITSs? Based on 
their complexity, their lack of reusable components, and the expert skillset 
required to design, create and update them, ITSs are expensive to author. Can AIS 
provide the tools needed to reduce authoring and integration costs while also 
lowering the barrier of skills required to create more complex AISs? 

A design goal for AISs is to extend adaptive instruction beyond traditional 
training and educational domains to make AISs more versatile. Today, ITSs are 
primarily focused on procedural, well-defined domains like mathematics, phys-
ics, and software programming, and they are just emerging as instructional tools 
for collaborative problem solving and team tutoring. The capability to support 
both individual and group instruction will greatly expand the number of applica-
tion domains for AISs and make them more valuable instructional tools. 

The high degree of effectiveness of ITSs easily make them cost effective in 
high density domains (e.g., high school mathematics) with large populations of 
learners. This is exciting news, but several barriers to ITS adoption in new 

FIGURE 2
Runtime AIS Experimentation in GIFT.
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 instructional domains remain. It is impractical at this time to develop ITSs for low 
density instructional domains (e.g., specialized fields with small populations of 
learners). However, the application of ITSs to a broader set of high density 
domains should be a goal and affordability is a primary challenge to their adop-
tion. Simpler and more automated authoring processes hold the key to making 
AISs affordable across a broad set of instructional domains. 

What if ITSs were easier to author in a broader range of task domains? What 
if the return on investment (ROI) made the authoring of even low density adaptive 
instructional domains cost effective? What does the AIS need to know about the 
learner(s), domain, and context to make effective instructional decisions? What 
are the goals, challenges, and emerging solutions related to the development, 
delivery, and evaluation of adaptive instruction? 

To this end we have identified eight goals for AIS enhancement along with 
their associated challenges and discussion of emerging solutions: 1) developing 
efficient authoring processes, 2) developing effective instructional decisions, 3) 
modeling learner trends 4) building rapport and engagement with learners, 5) 
modeling collective instructional domains, 6) expanding adaptive instruction to a 
broader array of task domains, 7) evaluating the effectiveness and efficiency of 
AISs, and 8) supporting distributed/mobile learning. Woolf (2010) identified 
seven grand challenges for education technology. We discuss four of these chal-
lenges: personalizing learning, assessing learning, supporting social learning, and 
diminishing barriers, and others in the context of their relationship to our eight 
AIS enhancement goals.

2 GoAl #1: DEvElopInG EffICIEnt AuthoRInG pRoCESSES

Authoring is the process of gathering, organizing, and sequencing content for 
delivery to the learner. Part of the authoring process is also identifying learning 
objectives (known as concepts in GIFT) and associating content, learner attri-
butes (states and traits), and measures of learning and performance with those 
learning objectives to allow AISs to track learner progress. AISs and their major 
adaptive element, ITSs, are expensive to develop because it takes a set of very 
specific skills and a keen understanding of intricate instructional processes to 
build them. ITSs are often purpose-built (domain-specific) systems built by teams 
whose expertise usually includes instructional design, software programming, 
human factors, and extensive domain knowledge (e.g., subject matter experts). 

One of the primary challenges to making AISs practical for use by the masses 
is improving their efficiency by reducing the skill and time required to author/
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create them. Woolf (2010) discusses the challenge of diminishing barriers. In the 
authoring process, this can be interpreted as enabling authors with varying knowl-
edge and skills to be successful at the authoring task. Toward this end, a set of 
associated authoring goals were developed by Sottilare, Goldberg, Brawner, & 
Holden (2012) for GIFT as adapted from Murray (1999, 2003). Most of these 
goals target efficiency in the authoring process:

 • Decrease the resources (materials, time, cost, etc.) required to author an ITS

 • Decrease the skill threshold required by various user groups associated with 
authoring and managing an ITS as part of a curriculum

 • Enable rapid prototyping of intelligent tutors for rapid design and evaluation 
of capabilities

 • Develop/adopt standards, including common tools and interfaces, for tutor 
authoring

 • Promote reuse of content, modules, and data structures in tutors

An objective of adaptive instruction is for each learner to have customized/tai-
lored learning experiences based on their prior domain knowledge, goal orientation, 
and other personalization factors to engage them in each and every learning experi-
ence. To this end, an AIS must have multiple types of content/scenarios to present 
to a variety of learners at runtime. Murray (2003) estimated that the authoring of 
non-adaptive computer-based instruction requires 100–300 hours for a team of 
skilled computer programmers, instructional designers, and subject matter experts 
time to create 1 hour of non-adaptive computer-based instruction. AISs require 
more content (e.g., presentations, media, question banks, conversation trees, simu-
lation scenarios, assessments, and instructional strategies) to provide a variety of 
adaptive paths based on individual differences and this increases the effort to author 
and its associated tasks of developing/finding and organizing content. Two 
approaches are being pursued concurrently to make AISs easier to author: 1) 
improving the usability of authoring tools to make the authoring process less com-
plex for authors, and 2) automating parts of the authoring process to reduce/elimi-
nate the author’s workload. 2.1 Improving the Usability of GIFT Authoring Tools.

Specifically, in GIFT, we are attempting to improve the authoring tool inter-
faces to make the process more natural for the author. This has made the GIFT 
authoring process more efficient by reducing the author’s cognitive load. Cogni-
tive load was reduced by eliminating extraneous information and only presenting 
controls and information that are pertinent to the authoring task (germane) or 
pertinent to learning the task (instrinsic). We are also attempting to reduce/elimi-
nate steps in the authoring process by providing tools or job aids.
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2.1.1 Reducing Cognitive Load through Simpler Authoring Interfaces
Since AISs consider the learner to be an integral part of the system upfront, 

usability is always a consideration and one of the primary learners in an AIS is 
the author. The author comes to the task of creating an instructional system with 
a set of skills that may not include software programming or instruction design, 
but usually comes with some knowledge of the domain. GIFT attempts to over-
come the author’s deficiencies by eliminating the need programming to a large 
degree and baking the principles of instruction into the process to guide the 
learner in developing effective instruction. While programming is required to 
join new external systems (e.g., training environment or sensor) to GIFT, once a 
gateway is created for an application, the application can be used by dragging 
and dropping a representative object into the learning sequence for any GIFT 
course (Figure 3).

The drag-and-drop interface allows authors to select and sequence course 
objects (e.g., various types of media content, external applications, conversation 
trees, adaptive courseflow objects, and surveys). Once the author selects and 
sequence the object, GIFT provides a window for the author to configure the 
object with the information needed for it to be functional during instruction. This 
provides the author with a set of templated objects with which they can build 
courses.

GIFT integrates instructional design principles primarily through the adaptive 
courseflow object which incorporates Merrill’s Component Display Theory 
(CDT) of instruction (1983). This courseflow object sequence and loops the 

FIGURE 3
Drag and Drop Course Authoring in GIFT.
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learner between four phases of instruction for a concept or set of concepts: rules, 
examples, recall, and practice. Figure 4 (right window) shows four concepts and 
associated rule phase content for an excavator simulator. In the rules phase, the 
learner is presented with terms and facts about the primary components of an 
excavator and their functions.

 2.1.2 Reducing Cognitive Load by Eliminating Steps in the Authoring Process
One difficulty that was reported soon after we integrated GIFT with an exter-

nal environment was that the authoring process was now significantly longer. For 
example, we integrated a game-based environment, Virtual BattleSpace (VBS), 
and authors reported that they now had authoring tasks in both GIFT and VBS. In 
VBS, scenarios would be defined using the VBS scenario editor. In GIFT, mea-
sures from VBS that were used to assess progress toward learning objectives had 
to be defined in GIFT as conditional classes so GIFT understood what they meant. 
For example, GIFT would define what elements constituted a location in VBS. 
However, each time you wanted to identify a location in VBS, it would require 
jumping from GIFT to VBS to identify that set of coordinates. 

We decided to eliminate the extra steps in the GIFT authoring process by mak-
ing a GIFT authoring window available in the native external environment. We 
call this GIFT Wrap (Figure 5) and it has been demonstrated for both VBS and 
the ARES tactical sandtable. We are attempting to generalize this interface for use 
in a larger array of systems by specifying the GIFT Wrap interface in much the 
same way we specified the GIFT Gateway. 

FIGURE 4
Configuring an Adaptive Courseflow Object in GIFT.
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2.2 Automating GIft Authoring processes
Automating parts of the authoring process has been explored through different 

approaches with varying degrees of success including: automated content devel-
opment from text sources and the development of wizards to guide inexperienced 
authors. Much of Army training differs from traditional ITS content (e.g., prob-
lem-based mathematics and physics tutors) in that it often requires conceptual 
knowledge (why you are doing something) in addition to procedural knowledge 
(what to do). We are seeking new methods to reduce the skill and time required to 
author scenario-based simulations and serious games to allow GIFT to automati-
cally author variants of existing training scenarios which are relevant to the 
authors defined learning objectives.

2.2.1 Automated Scenario Generation
The method is called automated scenario generation (ASG; Zook et al, 2012) 

or evolutionary scenario generation (ESG; Luo, Yin, Cai, Zhong & Lees, 2016). 
This method focuses on how to use information from a “parent” scenario to gen-
erate hundreds or thousands of “child” scenarios and then rank order the child 
scenarios according to their relevance to a set of author-defined learning objec-
tives. GIFT already allows authors to explicitly specify learning objectives known 
as “concepts”. Additional detail on how GIFT functions can be found in the GIFT 
software documentation at www.GIFTtutoring.org.

FIGURE 5
Configuring a Bounded Area in an External Environment using GIFT Wrap.



14 R. A. Sottilare

The automated scenario generation method described would allow a GIFT-
based tutor to customize (e.g., change difficulty level of the scenario) in real-time 
based on the learner’s states (e.g., performance or emotion) or traits (e.g., person-
ality) to optimize their learning, retention, and transfer of skills from training to 
the operational or work environment. This method would allow ITS developers 
who want to integrate GIFT with training simulation or serious games (e.g., 
 Virtual Battle Space) to expand existing training capabilities to facilitate adaptive 
instruction with minimal additional burden on the scenario author. 

2.2.2 Automated Concept Mapping
Another method to automate steps in the authoring process uses text-based 

documents (e.g., manuals, text books, course material, and web content) to gener-
ate hierarchical models of both expert measures and domain content (Kelsey, Ray, 
Brown, and Robson, 2015). These hierarchical models can then be used to gener-
ate the unique part of a GIFT-based tutor, the domain knowledge which includes 
content, question banks, assessments, and tutor interventions. While the hierarchi-
cal model generation shows promise, the error rate in the output (e.g., dialogue-
based tutor or chatbot) remains too high for practical application at this time. 

We will close our discussion of authoring challenges by touching on evaluation 
methods to compare various authoring tools and methods. This is difficult at best 
given the lack of standards between authoring systems and their resulting ITSs. 
Sottilare & Ososky (2017) developed an algorithm for measuring the complexity 
of GIFT-based tutors by assessing the complexity of the networks needed to define 
the complexity of their constituent learning concepts. Moving forward, they plan 
to expand the methodology within GIFT and examine methods to directly com-
pare disparate tutors created by other authoring systems (e.g.,  Cognitive Tutor, 
AutoTutor).

3  GoAl #2: DEvElopInG EffECtIvE InStRuCtIonAl 
DECISIonS

Next, we examine the process of tutoring and the effectiveness of instructional 
decisions made by AISs through the lens of Merrill’s Component Display Theory 
(CDT; 1983) and principles of personalized instruction. 

3.1 theory-Driven Instruction
As noted above there are four phases in CDT: rules, examples, recall, and 

practice. Rules are facts and principles associated with the domain of instruction. 
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As part of the rules phase in the domain of baseball, you would need to under-
stand the concept of “shortstop”. The examples phase provides models of suc-
cessful process or behaviors where the learner is presented with examples of 
successful behaviors which in baseball would include demonstrations of how to 
hold a bat and position yourself in the batter’s box. Next, the AIS would assess 
the recall of the learner about essential rules and examples. Finally, the learner 
would be placed in a training environment in order to practice and develop/main-
tain critical skills. In GIFT, we are developing gateways to allow the acquisition 
and assessment of data from a both live (learner in a real environment) and simu-
lated practice (learner in a virtual environment.

GIFT provides three general actions by the tutor: instructional strategies, tac-
tics, and policies. Strategies are recommendations by the tutor based on learner 
states and traits and are domain-independent. Strategies have been derived from 
the instructional and learning sciences literature. A meta-analyis provided their 
effect size and relation to learner attributes. Strategies are administered by GIFT’s 
engine for managing adaptive pedagogy (eMAP; Goldberg, et al, 2012). EMAP 
recommendations include generalized plans of action or next steps by the tutor. 
Examples include “prompt for more information”, “initiate a reflective dialogue”, 
and “skip content based on prior knowledge.” 

Once a strategy is recommended by eMAP, it forwarded to the domain module 
where the tutor takes the recommendation and chooses and executes a tactic, an 
action with a domain-specific context. For example, a recommendation of “ask 
the learner a question” based on a assessed state of confusion results in a tactic 
selection of a specific question “what are the four principles of marksmanship?” 
for our marksmanship example. Policies have not yet been implemented in GIFT, 
but would be considered rules to be enforced by software-based agents to insure 
effective instruction. Examples of good instructional practices include mastery 
learning and error-sensitive feedback. Mastery learning is a policy of holding 
learners in a lesson until mastery of the concepts associated with that lesson have 
been demonstrated. Error-sensitive feedback weighs the criticality of learner mis-
takes to determine if and how often to provide corrective feedback.

3.2 personalized learning and Adaptive Instruction
The key to adaptive instruction is the personalization or tailoring of the tutoring 

process for each individual and team based on their learning needs and their pref-
erences, but the critical element is the effect of the tutoring experience on learn-
ing. For this discussion, we extend the concept of personalizing education 
described by Woolf (2010) to be personalizing all learning experiences by includ-
ing all forms of formal and informal education and training. To personalize 
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 learning, the tutor (human or machine-based) requires some level of understand-
ing or a model of each individual learner or each group of learners during collec-
tive instruction (e.g., collaborative learning, team/group instruction). 

This learner model (or the team model) must be updated to reflect changes in 
knowledge, skill, attitudes, beliefs, desires/goals, intentions, preferences, traits, 
and other states (e.g. emotions, performance). To maintain this learner model 
data, it must first be acquired (sensed, self- reported, retrieved, derived) and then 
classified into states (more transient) or traits (less transient) via an assessment 
process. This assessment of student learning posed by Woolf (2010) is particu-
larly important due to the accuracy required to realize a significant learning effect 
(Sottilare, 2012; Sottilare, Ragusa, Hoffman, and Goldberg, 2013; Sottilare, 
2014). Large inaccuracies in assessment of learner states will likely result in poor 
instructional decisions by the tutor. Once the learners’ states and traits are classi-
fied, then the tutor must intelligently select an optimal course of action by the 
tutor (e.g., provide feedback, direct the learner to some activity for remediation) 
and then the cycle starts anew. 

This tutoring process is described in the learning effect model (LEM) first 
proposed by Sottilare (2012) and later extended to include measures of effective-
ness for both individuals and teams (Sottilare et al, 2017). The LEM forms the 
basis of the instructional process used by GIFT. Figure 6 highlights the interac-
tion between the LEM for an individual learner (top) who may be part of a team 
(bottom). For the individual learner, GIFT may derive the level of domain com-
petency from the Long Term Learner Model (LTLM; See Goal #3), a pre-test, or 
recent performance. 

While the Team LEM has not yet been fully implemented in GIFT, it does 
provide a working model for its design. For teams, GIFT uses the LEM to assess 
both teamwork and taskwork. Teamwork examines the interactions of the team to 
assess attitudes, behaviors, and cognition in order to understand various anteced-
ent states critical to team learning and performance (Sottilare et al, 2017). Team-
work is largely domain-independent. Whereas, team taskwork is domain-dependent 
in that its measures are dependent on the domain under instruction. In the Team 
LEM (Figure 6), GIFT assesses the progress of the team and the contributions of 
individuals to those team taskwork goals in order to determine its future strategy 
selections, recommendations, and tactics. Policies for teamwork and taskwork 
are still evolving. 

The major challenge in the LEM is how to optimize decisions in an environ-
ment with a very large number of variables. Not only does each learner have a 
large number of states and traits that are either antecedents or direct indicators of 
learning, but the context in which that learning occurs is defined by many 
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 conditions in the environment (e.g., location, sequence in the course, ambient 
light, simulation resolution). These conditions may or may not affect learning or 
task performance depending on the domain under instruction. 

GIFT helps to simplify this complex problem of evaluating effectiveness 
through two architectural principles: 1) instructional strategies (plans for tutor 
actions) are selected based only on learner states/traits and are independent of the 
domain of instruction and thereby independent of context; 2) selection of instruc-
tional tactics (actions executed by the tutor) are limited by the instructional strat-
egy selection and then further limited by the context of the instruction. For 
example, if the learner’s state is classified by a sensor measuring facial marker 
distrances as “confused”, an appropriate instructional strategy selected by a 
GIFT-based tutor might be to ask the learner a question to assess their knowledge 
of a concept under instruction. An appropriate instructional tactic might be to 
select a specific question from a question bank that has been tagged as “medium 
difficulty” based on previous content presented and scenarios/problems dis-
cussed. This process is known as instructional management in GIFT.

Instructional management involves the automatic optimization of learning 
through the AIS’s decisions and interactions during adaptive instruction. The 

FIGURE 6
Adapting Team Instruction using the Learning Effect Model (LEM) for Individuals (top) and Team 
(bottom).
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tutor’s goal is to enhance learning for that individual or team by adapting the 
instruction (e.g., changing the challenge level) based on the conditions of the 
learner and environment. Instructional management is the concept of automati-
cally managing the delivery, pace, and sequencing of instruction including the 
assessment and response to changing states of the learner and affiliated instruc-
tional environments. 

Goldberg, Sinatra, Sottilare, Moss, & Graesser (2015) documented instruc-
tional management goals and approaches for GIFT. A primary goal was to 
examine a variety of use cases in different task domains (e.g., cognitive, affec-
tive, psychomotor, and social) to understand the level of complexity relative to 
the conditions of the learner(s) and the environment and any competing out-
comes (e.g., accelerated learning vs. retention). Understanding complexity aids 
the ability of the tutor to intelligently manipulate conditions to optimize 
 outcomes. 

One approach to managing complexity and uncertainty is to discover and 
develop modeling functions that account for uncertainty across various policies 
informing pedagogical decisions (e.g., content delivery, course navigation, and 
guidance). The objective here is to develop these functions to refine and optimize 
themselves through reinforcement learning mechanisms (e.g., Markov Decision 
Processes) over time as new interaction and performance data becomes available. 
A planning approach to quantify tutorial decisions and associated reward states 
has been prototyped (Rowe, Pokorny, Goldberg, Mott, and Lester, 2017) and is 
currently being validated through experimentation and will be incorporated into 
the GIFT cloud baseline (2018–1) in July 2018.

Another concurrent approach to addressing the optimization problem is 
based on observation of outcomes of human tutoring decisions. By observing 
the perception, judgment, and behaviors of expert human tutors to support 
practical, effective, and affordable learning experiences, we might be able to 
model their most effective strategies, tactics, and policies in software-based 
agents. One such example is modeling the scaffolding techniques of  
expert human tutors (Lepper, Drake, and O’Donnell-Johnson, 1997). Scaffold-
ing is “an act of teaching that (i) supports the immediate construction of 
knowledge by the learner; and (ii) provides the basis for the future independent 
learning of the individual” (Holton and Clarke, 2006). Scaffolding involves 
“support, in the form of reminders and help, that the apprentice requires to 
approximate the execution of the entire composite of skills” (Blakeslee, 1997). 
As the learner grows in competence, support is proportionally withdrawn by 
the tutor until the learner is able to achieve the full learning expectations in the 
domain. 
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4  GoAl #3: MoDElInG lEARnER AnD tEAM tREnDS AnD 
CoMpEtEnCy

This goal is focused on instructional methods for individual learners and teams 
which promote competency, skill or mastery in a domain. The development of a 
long term learner model (LTLM) is critical to understanding individual learner 
and team trends. Social learning is also discussed in terms of its relationship to 
developing shared mental models for collaborative learning or collaborative 
problem solving. 

4.1 long term learner Modeling of Competency
As noted earlier, a significant part of effective interaction between learners 

and tutors will depend upon the tutor’s understanding of the learner which will 
be facilitated through the development of a LTLM. LTLMs are a record of 
learner data (e.g., knowledge, goals, experiences, achievements, preferences) 
over long enough periods to show trends of attitudes, behaviors, and cognition. 
Learner data can be used by AISs to infer/predict future learner states (e.g., 
domain competency of learners entering new instructional experiences) based 
on previous experiences. A primary challenge in building rapport/engagement 
with learners is accurately modeling their domain competence. Methods are 
needed to coalesce learner data into a quantifiable states representing varying 
levels of domain competence so the tutor may adapt appropriately to their 
learning needs. 

The data in the LTLM may be persistent (little or no change over time) or 
transient (changes/decays over time). Examples of persistent data generally 
include gender, personality traits, and past achievements. Transient data 
includes knowledge and skill levels which decay overtime, emotional states, 
and interests. The importance and influence of specific learner attributes and 
their effect on competency and engagement will drive their presence in the 
LTLM. It is not unreasonable to see future LTLMs that contain fixed attributes 
(learner centric focus) and variable attributes which depend upon the domain of 
instruction. Recent designs for the LTLM include achievement statements 
based on the experience Application Program Interface (XAPI) to form a 
learner record store (LRS). Sottilare, Long, & Goldberg (2017) recommended 
changes to the XAPI standard to support modeling of learning, skill decay, and 
domain competency in order to provide a more comprehensive dataset for the 
LEM to act upon. 

The LEM (discussed earlier in Goal #2) uses learner data to construct learner 
states or determine learner traits/preferences. Understanding these states/traits/
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preferences enable the AIS to engage the learner with relevant content. For exam-
ple, more experienced learners in a domain of instruction may anchor new 
 learning to novice topics, but prefer more challenging content and problems. The 
ability of AISs to adapt learning experiences to be more germane to each indi-
vidual means more engaging instruction in which the probability of learning 
increases. 

4.2 Social learning to Accelerate Competency 
Another method of increasing learning is through peer or social learning. 

Woolf (2010) advocates the importance of supporting social learning with educa-
tion technology and specifically calls out technology capabilities to “sustain con-
tinuous learning by active students in a way that enable students to communicate 
where they are located and to value learning”. To build rapport between the 
learner and the tutor, AISs must enable social learning in way that learners can 
engage ITSs in the same or similar manner in which they engage human tutors 
and peer learners. In other words social learning methods should be enabled even 
when the interaction is only between a human learner and a machine-based tutor, 
but could also be applied to teams under instruction.

Social learning has been extensively covered in the team performance (Can-
non-Bowers, Tannenbaum, Salas, and Volpe, 1995; Zachary et al, 1999; Cannon-
Bowers & Bowers, 2011; Salas, 2015;) and computer-supported collaborative 
learning (CSCL) literature (Johnson & Johnson, 1986; Johnson & Johnson, 1999; 
Dillenbourg, 1999; Stevens, Berka & Sprang, 2009; Adamson, Dyke, Jang, and 
Rosé, 2014). Sottilare, et al (2017) distinguished team and collaborative learning 
models based on their goals and member behaviors and interaction. Teamwork 
models examine the behaviors and interaction of groups working toward common 
goals and are independent of the domain of instruction. Team taskwork models 
examine behaviors and interaction of groups working toward task objectives in a 
specific domain. 

Finally, collaborative learning models represent member behaviors and inter-
actions in aiding other members to reach learning objectives. Together these 
make up a class of collective instruction which is discussed further in Goal  
#5 of this article. Among the variety of instructional models (e.g., traditional 
classrooms, one-to-one tutoring, collaborative learning, and flipped class-
rooms), AISs may be a technology of choice to enable social learning inside and 
outside the classroom. Additional technology enablers of social learning include 
collaborative learning fora, and distributed/mobile learning solutions (see  
Goal #8).



 Design Goals and Solutions for Adaptive Instructional Systems 21

5  GoAl #4: BuIlDInG RAppoRt AnD EnGAGEMEnt wIth 
lEARnERS

Another facet of social learning advocated by Woolf (2010) can be found in 
human tutors and AISs attempting to engage learners by tailoring content to their 
learning needs as identified by their states (e.g., prior domain knowledge), traits 
(e.g., personality trait of openness), and preferences (e.g., interests, learning 
style). AISs understand and model learners in order to guide them through an 
instructional experience. To duplicate the rapport developed between human 
tutors and learners, developers have integrated virtual humans (VH) in tutor inter-
faces. For example, one of the best known dialogue-based tutoring systems, 
AutoTutor (Graesser, Chipman, Haynes, and Olney, 2005), provides a VH inter-
face to communicate feedback, support, and directions to the learner. GIFT also 
has VH capabilities as part of its tutor-user interface which may be driven via a 
conversation tree authored by the developer (fixed decision tree) or by calling 
AutoTutor conversational agents as a service (adaptive conversation). Research 
suggests that the physical characteristics of VHs influence the engagement and 
social presence of learners (Kim, Wei, Xu, Ko, & Ilieva, 2007), and learner 
engagement and decision-making can be also influenced by the perceived emo-
tional expressions (both verbal and non-verbal) of VHs (Choi, Melo, Woo, and 
Gratch, 2012). 

Evidence also implies that the channel of communication between the tutor 
and the learner or source modality (e.g., voice of unknown source, VH, or text) 
can make a difference in performance, retention and mental demand (Goldberg & 
Cannon-Bowers, 2015). Goldberg & Cannon-Bowers found that feedback from 
pedagogical agents in the form of VHs resulted in the largest retention outcomes 
during serious game play. They also found that feedback delivered as audio alone 
significantly lowered mental demand during game play. 

VHs may also play a role in assessing learning, domain competency, or prefer-
ences through interactive dialogue with a learner or a team of learners. AutoTutor 
Lite (Hu, Cai, Han, Craig, Wang, and Graesser, 2009) defined a process for eval-
uating information provided by learners (verbal or written) based on two dichoto-
mies: new/old information and relevant/not-relevant information. Using the 
tutoring process described by Person, Graesser, Kreuz, and Pomeroy (2003) 
where 1) the tutor asks a question or presents a problem to the learner, 2) the 
learner responds, 3) the tutor provides brief feedback, 4) the learner and the tutor 
collaboratively improve the quality of the answer, and 5) the tutor assesses the 
learner’s understanding of the answer. During this tutoring process, the tutor 
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tracks whether information provided by the learner is old or new and relevant or 
not relevant to the domain of instruction or the question posed by the tutor. Old or 
repeat information from the learner does not improve the quality of the answer, 
but new information may assuming it is relevant to the domain. This process of 
collaboratively refining an answer develops the trust of the learner and maintains 
high levels of engagement. 

The current version of GIFT supports service calls to AutoTutor to enable 
interactive dialogue. GIFT provides context, AutoTutor manages the dialogue, 
and then returns control to GIFT. Experimentation with GIFT and AutoTutor 
indicate that tighter coupling is required between the two functions in the way of 
datasharing to communicate more detailed results of interactive dialogue in Auto-
Tutor, but a basic capability to support interactive dialogue exists.

Another option to support interactive dialogue in GIFT is to drive dialogue 
through a commercial or academic VH software package. GIFT has an embedded 
Media Semantics Character that can provide feedback based on assessments in 
GIFT or be driven through a conversational tree in GIFT (Figure 7).

Social aspects of human-VH dialogue may also be reinforced by agent-based 
VHs using human information processor models like GOMS (goals, operators, 

FIGURE 7
A Simple Conversational Tree in GIFT.
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methods, and selectors; John & Kieras, 1996) to guide interaction between 
humans and agents. A set of goals (e.g., insure mastery of concept B, demon-
strate skill C) are defined for the agent to achieve with the learner. A set of 
operators or possible actions to be taken by the tutoring agent are defined based 
on the domain context. Operators may be perceptual, motor or cognitive acts that 
are used by the agent to influence any aspect of the learner’s state (e.g., cogni-
tive) or the task environment (see Figure 1). Methods are a set of steps or actions 
a procedure used by the agent to accomplish an assigned goal. Finally, selectors 
are rules used by the agent to select the most appropriate method available to 
reach an assigned goal or to deconflict competing goals (e.g., Goal A is a higher 
priority than Goal B).

The Virtual Human Toolkit (VHT; Gratch, Hartholt, Dehghani, and Marsella, 
2013) takes a more sophisticated approach to VHs as tutoring agents. The assess-
ment and decision-making functions of VHs generated by the VHT have their 
basis in psychological theories of emotion (Gratch & Marsella, 2005), natural 
language understanding (Traum, 2008), and human cognition (Swartout et al, 
2006). The evolution of GIFT as a multi-agent architecture is being driven by the 
need to describe GIFT functions as services, and the VHT will be one set of ser-
vices that allow authors to generate agents to support various interactions between 
GIFT-based tutors and learner populations.

Another aspect of how VHs or agents can support the development/mainte-
nance of rapport with learners is illustrated in the concept of teachable agents like 
“Betty’s Brain” (Leelawong and Biswas, 2008). The concept of learning by 
teaching others is a powerful methodology in which computer-based, domain-
independent teachable agents are used to motivate learners to learn more so they 
can pass on this learning to the agent. Other concepts for teachable agents are 
represented in tutoring methodologies like s where human learners interact with 
a virtual teacher and a virtual learner managed by intelligent agents (Cai, Feng, 
Baer & Graesser, 2014). Learners that might hesitate to interact with the virtual 
teacher may be more comfortable interacting with the virtual peer. As noted 
above, the ability to configure a virtual peer to take on the characteristics of the 
learner’s culture and preferences may enhance the engagement of the learner and 
thereby improve learning, performance, and retention.

The VH literature suggests that AISs can influence learning and performance 
through the configuration or manipulation of physical attributes and interactions 
of a VH to engage the learner in the instructional experience. Future versions of 
the GIFT authoring tools will need to incorporate elements to allow AIS authors 
to configure the physical aspects of VHs and adapt their culture and verbal 
responses based on learner preferences. 
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6  GoAl #5: MoDElInG CollECtIvE InStRuCtIonAl  
DoMAInS

Most tutors today are designed for individual learners, but a growing need has 
been identified to apply AISs to collective training and education. The move from 
individual to collective instruction will increase the complexity of most domains, 
increase authoring requriements, and increase the complexity of the assessment 
and intervention process for the tutor. As noted in our Goal #2 discussion, collec-
tive or team domains are not a simple multiple of the number of team members in 
a domain. There is additional complexity in the interactions between team mem-
bers, their roles and responsibilities, and the leadership present in the group. All 
these factors (and more) affect the learning and performance of groups.

Given the complexity and effort required to author collective tutors, what is 
the motivation to build them and how do we want the AIS to interact with learn-
ers in a team? Similar to individual tutors, the motivation to build collective or 
team tutors is to efficiently and effectively guide instruction in the absence of 
human tutors. Since many tasks are of a collective nature, it natural to want to 
apply the effectiveness of ITSs to teams, the foundational element of many orga-
nizations. The challenges associated with collective domains may seem large 
now, but successful models are developing in collaborative learning and small 
team taskwork.

One challenge is to understand the modeling of groups with different objec-
tives: teamwork, team taskwork, and collaborative learning. Teamwork is focused 
on the functions of the team independent of task domain. A model of teamwork 
derived from Burke, Stagle, Salas, Pierce and Kendall (2006) examines the influ-
ence of various team functions: 

 • Communication – disclosing information to or exchanging information 
between team members

 • Conflict – processes within the team to recognize and resolve conflict

 • Coaching – all leadership activities required to maintain a well functioning 
team

 • Cooperation – motivational drivers within the team to achieve the team’s goals

 • Coordination – behavioral mechanisms within the team used to accomplish 
goals

 • Cognition – common understanding of goals, roles, responsibilities, and 
domain; sometimes referred to as shared mental models

 • Context – team norms (rules, best practices) and interaction with the domain 
knowledge (content) 
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This model was used to understand various team states and examine anteced-
ents of team learning and performance in the literature from 2003 to 2013 
( Sottilare et al, 2015; Sottilare et al, 2017). Specifically, this large meta-analysis 
was conducted to complement and extend several meta-analyses published dur-
ing the early 2000s (e.g., leadership by Burke et al., 2006; cohesion by Beal et al., 
2003; team conflict by DeDreu & Weingart, 2003). Antecedents of team perfor-
mance included team states and their affiliated behavior markers: cohesion,  
collective efficacy, communication and leadership. While antecedents of team 
learning included: trust, cohesion, and conflict management. The remaining chal-
lenge is to implement assessment methods within GIFT to classify these anteced-
ent team states via the recognition of key behaviors among team members. Once 
this is done, interventions can be constructed for the tutor and a validation of the 
whole team tutoring model will be undertaken. 

While teamwork is about the examination of team interactions, and efficient/
effective communication across the team, team taskwork is about training to learn 
how to do a specific task as a team. In order to understand the team’s progress 
toward learning objectives (e.g., mastering tasks, recalling procedures) the AIS 
must be able to measure and interpret specific actions by each team member and 
understand its relationship to their roles and responsibilities. It is complex enough 
to acquire individual learner data and use that to infer individual changes in their 
individual performance state. Tutoring teams to perform taskwork in specific 
domains also involves understanding how teamwork and collective measures of 
team task achievement rollup to a team mastery measurement.

The major challenge for team taskwork instruction is that increases in task 
complexity, team interdependence, and team dynamics combined with decreases 
in task definition make team measures and assessment more difficult (Sottilare & 
Ososky, 2017). Task complexity is measured in GIFT as the number of leaf nodes 
in a tree of concepts or learning objectives. In other words, the number of termi-
nal concepts that must be measured for assessment of a team task. The larger the 
number of leaf nodes and dependencies between elements of the task, the more 
complex the task and more difficult it is to assess. Differences in member compe-
tence in tasks can also diminish the ability of the team to perform at optimal 
levels. If there are five concepts to be mastered for a given team task (Task 1) and 
for three of those concepts, Team Member A is dependent on the skill and output 
of Team Member B, then there is a high likelihood that this task is more complex 
than a team task with one interdependent concept, and that more complex tasks 
are more difficult to master.

Referring back to the LEM, (Figure 8), it is easy to see that errors in acquiring 
learner data (e.g., no input or failed sensors) can lead to misclassification of a 
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higher percentage of learner states and therefore lead to a higher error rate in clas-
sifying team states. Misdiagnosis of team states lead to higher error rates in both 
instructional strategy and tactical decisions. 

Collaborative learning environments may be treated similarly to team task-
work environments in that they both seek to educate/train groups in a particular 
domain, but differ slightly in their goals. Collaborative learning is about learn-
ing to do something that can be performed by an individual, but is learned 
through a group process in which each group member can contribute to the 
learning of other group members. In team taskwork environments, it is often 
assumed that individuals possess the skills required to perform their assigned 
roles. While this may not always be true, the focus of team taskwork training is 
to learn how to work as a team to perform a task that is usually not performed 
by an individual. For example, a collaborative group might share techniques for 
solving a quadratic equation, but it is not a team task. Conversely, someone who 
might have collaboratively acquired knowledge of all the positions on a basket-
ball team would not go out and perform alone. Teamwork is not taskwork, but 
teamwork includes collaboration required to perform collective tasks. Task-
work is not necessarily collaborative learning, but may include collaboration. 
While these tasks are different in some ways, they are not mutually exclusive of 
one another. 

A major challenge is the ability for a tutoring architecture like GIFT to repre-
sent all types of collective tasks including methods to acquire individual learner 
data, assess individual and team states, and then optimally select the most appro-
priate policy, strategy or tactic. Building reliable models usually means collecting 

FIGURE 8
A Team Learning Effect Model (LEM; Sottilare et al, 2017).
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lots and lots of data. This may be practical in large organizations where there are 
high density courses/lots of learners, but may not be practical where assessing 
team states based on a large number of conditions appear for the learners and the 
instructional environment. This means many sets of conditions may be rarely 
seen even with large datasets. Seeking methods to reduce the amount of data 
needed to build dependable models should be a significant goal for the AIS com-
munity in the nearterm. 

7  GoAl #6: ExpAnDInG ADAptIvE InStRuCtIon to  
A BRoADER ARRAy of tASk DoMAInS

As noted earlier, ITSs have been prominently tied to well-defined, cognitive 
domains like mathematics, physics, and software programming. In these 
domains, ITS have demonstrated significant effect on the learning and perfor-
mance of individuals, but many instructional domains involve physical tasks 
and many more involve collectives or teams. ITSs have not yet demonstrated 
their effectiveness in these domains. In order to show the influence on learning 
effectiveness, learning efficiency (accelerated learning), retention, transfer of 
skills, and relevant team outcomes (e.g., team learning, performance, satisfac-
tion, and viability), ITSs and their extended counterparts AISs must be able to 
produce prototype environments with adequate methods of measurement and 
assessment. Murray (1999, 2003) noted the need for a rapid ITS prototyping 
capability to be able to evaluate various ITS designs and this includes new 
domains in AISs.

With a goal of expanding adaptive instruction to a broader array of task 
domains, a set of questions remain open and are discussed below: 

 • How do we represent new domains to learners so learning takes place?

 • What methods are needed to acquire data associated with identified measures?

 • What measures are needed to assess learning of individuals and performance 
of teams?

 • Are there classes of task domains that have common factors so that they may 
be treated the same or similarly during authoring, instructional delivery, or 
evaluation processes?

7.1 Representing new Domains
In the nearterm, extending ITSs to new domains may be limited to applying 

techniques used in cognitive (decision-making and problem solving) domains to 
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case studies in affective domains (e.g., emotional intelligence, decision-making 
based on moral judgment). The basic functionality of ITSs would not have to 
change much in order to represent affective case studies, but to make the leap to 
psychomotor domains and social/team/collective instructional domains requires 
some fundamental change to how ITSs are structured and how they function.

Psychomotor tasks involve the enhancement of physical movement, coordina-
tion, and the use of the motor-skills through deliberate practice and is measured in 
terms of speed, precision, distance, procedures, or application of techniques (Simp-
son, 1972). The acquisition of psychomotor task measures is more complicated than 
for task domains in which the learner’s inputs are captured directly by the computer. 
Significant challenges exist in understanding the learner’s interaction within real/
live environments. Vargas-González, Williamson, LaViola & Sottilare (2017) have 
anticipated the need to model this interaction between the learner, the real environ-
ment, and perhaps even virtual augmentations within the real environment (aug-
mented reality - AR). The combination of see-through displays (e.g., Microsoft 
Hololens) with multi-modal interaction techniques show high potential as AISs for 
instructing psychomotor tasks when linked to ITS technologies. To support this 
integration, a plugin or interop must be developed to allow the external applications/
environments to communicate within GIFT. In Vargas-González’s application, a 
new interop was developed to link Unity 3D and a XML Remote Procedure Call 
(XMLRPC) server client to communicate between GIFT and a Windows Universal 
Platform Applications (HoloLens). Recently, a protoype user interface for author-
ing interoperable augmented reality environments has been implemented in a GIFT 
software development branch and is being enhanced to improve it usability.

Specific tasks are being examined to understand what is needed to assess 
learning and performance in new domains. Laviola et al (2015) examined aspects 
of tutoring tasks in augmented reality environments in which instruction could be 
provided almost anywhere and which led to authoring application developed by 
Vargas-González and colleagues (2017). In another psychomotor task, Sottilare, 
Hackett, Pike, and LaViola (2016) hypothesized the use of pressure sensors and 
smart glasses to train hemhorrage control tasks. Pressure sensors placed in tour-
niquets and pressure bandages would be used to measure the learner’s ability to 
reduce bleeding.

7.2 Acquiring Data and Assessing learning in new Domains
One approach to assessment of learning and performance in a variety of task 

domains is evidence-centered design (ECD; Mislevy & Haertel, 2006), an 
approach to constructing educational assessments in terms of evidentiary argu-
ments which provide clear and convincing proof of the learner’s state(s). Usually 
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measures of elements within a task are identified as assessment criteria and form 
the basis of modeling the learner’s performance. These measures could be deci-
sions or actions taken by the learner. ECD provides a process which links features 
of tasks to various learning or performance outcomes, and there by provide  
evidence of learning or performance. The ECD process is organized into five lay-
ers: domain analysis, domain modeling, conceptual framework, implementation, 
and delivery (Mislevy & Riconscente, 2006). In the domain analysis layer, infor-
mation is mined from the task domain to determine how knowledge is developed 
or acquired by the learner, used by the learner, and shared with other learners. In 
the domain model, specific assessment arguments are developed in narrative form 
based on the domain analysis. In the conceptual framework, specific assessment 
arguments are formed into structures and specification for tasks, tests, evalua-
tions, and measurement models. In the implementation layer, the assessment is 
produced and includes tasks and calibrated measurement models. Finally, in the 
delivery layer, this process coordinates the interactions of the learner and sequenc-
ing of tasks and also provides scoring and reporting. 

Measures in the psychomotor domain are generally captured remotely (e.g., 
motion capture via remote sensing) or derived from other measures. This presents 
challenges with potential data gaps or receipt of corrupted data. A robust AIS 
design should consider the accuracy of these measures and the reliability/avail-
ability of sensor data for classification. GIFT currently provides a standard gate-
way specification which allows authors to develop interops to link sensors and 
external systems to GIFT and to receive and interpret data from GIFT. 

7.3 Grouping task Domains into Classes
The advantage of grouping task domains into classes is the ability to examine 

commonalities in data structures, measures, acquisition methods, and assessment 
techniques for each class in order to author, deliver, and evaluate adaptive instruc-
tional technology. Initial studies are focusing on defined task domain classes: cog-
nitive (Bloom, 1956; Krathwohl, 2002), affective (Krathwohl, Bloom, & Masia, 
1964), psychomotor (Simpson, 1972), and social (Soller, 2001). Sottilare & 
 LaViola (2015) and Sinatra & Sottilare (2016) examined similarities in psycho-
motor tasks in attempting to categorize tasks beyond traditional desktop com-
puter-based tutoring in traditional cognitive task domains (e.g., mathematics, 
reading comprehension, physics) and identified similarities in measures and data 
acquisition techniques. Sinatra & Sottilare’s analysis is a two dimensional taxon-
omy of domains which evaluates tasks by complexity and definition resulting in 
three viable groupings of tasks: well-defined, low complexity; well-defined, high 
complexity; and ill-defined, high complexity. Since by their nature ill-defined 
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domains are complex, there is no category for ill-defined, low complexity. Com-
plexity is defined by the structure of the domain knowledge and the number of 
concepts to be assessed (Sottilare & Ososky, 2017).

Given the variety of domains which might be adaptively instructed, a couple 
of key questions arise when discussing the potential of ITSs and AISs into new 
task domains: 

 • Will AISs be as effective in new domains as they have been in traditional 
domains?

 • Are different methods needed to determine the effectiveness and efficiency of 
adaptive instruction in various domains? 

This topic will be addressed in Goal #7 below. 

8  GoAl #7: EvAluAtInG thE EffECtIvEnESS AnD EffICIEnCy 
of ADAptIvE InStRuCtIonAl SyStEMS

A key part of Woolf’s (2010) personalizing learning goal is the ability of the 
AIS or ITS to assess learning resulting from personalization and involves the 
need for methods to evaluate the effectiveness and efficiency of adaptive instruc-
tional technologies (tools and methods). The goals of enhanced effectiveness and 
efficiency differ, but are complementary. For effectiveness, we seek to improve 
the capacity of the learner in a fixed period of time, and for efficiency, we seek to 
accelerate learning or reduce the time to learn a fixed amount of material (Sottil-
are, 2017a). It is worth noting that training and education goals differ (Fletcher, 
2017). Training objectives are focused on learning to do a specific task or set of 
tasks so the learner can do these tasks in the operational or work environment. 
Educational objectives are much broader and focused on preparing the learner to 
perform in yet unknown work environments. These differences in goals may 
mean the instructional approaches should also differ, and then so should the 
methods to evaluate their effectiveness/efficiency.

Given the complexity of AISs based on the number of conditions represented 
in the learner(s) and the environment, and the large degrees of freedom repre-
sented by the instructional decision space, it is often difficult to just look at an 
instructional situation and apriori understand what should be done to optimize 
learning or retention or performance or transfer of skills. As discussed in Goal #2, 
a large number of studies have been reviewed as part of meta-analyses to initial-
ize best practices for AISs, but still must be validated through experimentation. 



 Design Goals and Solutions for Adaptive Instructional Systems 31

To this end, it is critical to make big data available to reinforcement machine 
learning processes to understand adaptive instructional decisions and the result-
ing value or effect. Over time, the evaluation of these decisions will result in 
improved effectiveness. 

AISs must be self-evaluating and self-regulated or allow for rapid analysis by 
other systems by allowing them access to run-time data. There are many tools that 
could be used to examine effectiveness, but we will mention a few open and com-
mercial technologies for reference. Each of these tools may be used indepen-
dently or in combination. For example, pre-processed (filtered) data from 
RapidMiner might be used by GIFT to classify learner states. Because GIFT is a 
modular architecture, it is possible to integrate nearly any open source big data 
analysis tool. The inclusion of these tools in this list does should not be construed 
as an endorsement, but merely a few easily accessible tools known by the author 
to examine questions of AIS effectiveness.

First, the GIFT testbed (Figure 2) combines common elements of ITSs, the 
learner model, domain model and instructional model to form and experimental 
system which can be evaluated against desired outcomes: learning, performance, 
retention, or transfer of skills. The testbed and its experimental system can also 
be used to conduct comparative analyses: AIS vs. traditional training methods, 
intervention vs. non-intervention strategies, the relative importance of new learner 
model attributes or new policies, strategies or tactics. 

An evolving data repository with analytic capabilities is LearnSphere (Koed-
inger, Liu, Stamper, Thille & Pavlik, 2017). LearnSphere is decendent of 
DataShop (VanLehn et al, 2007). Funded by the National Science Foundation, 
LearnSphere stores educational data associated with ITSs, AISs, educational 
games and massively open online courses (MOOCs) so course developers and 
instructors will be able to improve adaptive instruction through data-driven, evi-
dence-centered course design. Unlike DataShop which was located on a single 
server, LearnSphere can support many data repositories or spheres in the cloud 
with varying degrees of sharing.

Another open source analysis tool is the Waikato Environment for Knowledge 
Analysis (WEKA; Eibe, Hall & Witten, 2016) which is a suite of machine learn-
ing algorithms and tools written in Java and provided as free software under the 
GNU General Public License. While WEKA has generally been an offline tool, 
the public availability of its software allows developers to apply WEKA to their 
systems so it could be used for real-time evaluations.

Free commercial tools for the evaluation of big datasets are numerous. We 
won’t try to mention them all here, but only reference a few that have been applied 
to datasets and documented in the instructional literature: 
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 • RapidMiner (Mierswa, Wurst, Klinkenberg, Scholz & Euler, 2006)

 • Orange (Demšar, Zupan, Leban, & Curk, 2004)

 • Knowledge Extraction based on Evolutionary Learning (KEEL; Alcalá, 
Garcıa, del Jesus, Ventura, & Garrell, 2007) 

9 GoAl #8: SuppoRtInG DIStRIButED/MoBIlE lEARnInG

A critical path to Woolf’s (2010) goals of personalizing learning and diminish-
ing barriers are tied to the flexibility of the AIS to provide learning opportunities 
in a variety of settings, and a significant challenge to making AISs practical for 
widespread use is the ability to apply adaptive instructional principles at a dis-
tance. To improve accessibility and usability, GIFT is available as a cloud-based 
AIS via Amazon Web Services (AWS). The advent of team modeling in GIFT 
will allow distributed team learning via CloudGIFT. We are also beginning to 
examine opportunities to leverage mobile platforms (smartphones and tablets) as 
shown in Figure 9, but there are some significant challenges in assessing learner 
states based only on sensors available in a mobile platform (e.g., GPS, camera) 
and design decisions need to be made about how to handle learner data when 
there is poor or no connectivity. There are options for storing and transmitting 
data when connectivity is available again, but storage may be problem when data-
sets are large.

In laboratory or classroom settings, it is possible to unobtrusively collect 
information about the learner through sensor suites and self-report data. The 
use of sensors at a distance is a primary challenge. For example, a learner is on 
the move and has a mobile device through which he will receive instruction. 
While smartphones have a bevy of sensor to report location/position and some 
behaviors, they are just beginning to be able to capture physiological data reli-
ably as they are paired with smart watches (e.g., Samsung, Apple, or Google) 
and other sensors. The limitation to these technologies now are the lack of 
processing power onboard the mobile device to assess complex states in real-
time based on data streams. Presently, it is impractical to send streams of phys-
iological data to a central server for processing. Smartglass manufacturers also 
found this out early and began using offloading some data and calculations to 
the learner’s smartphone with limited success. This problem becomes more 
difficult as we scale up from individual learners to teams. Capturing some 
behavioral markers necessary to classify teamwork or taskwork states of teams 
is currently not practical in mobile learning environments and may not be 
practical. 
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In the nearterm, we may have to realize the limitations of the technologies and 
design instruction around those limitations. Longer term, we want to solve these 
problems. If we are fortunate, commercial technology will come and solve some 
or all of these problems. While we are waiting, it would be wise to identify alter-
nate methods to be able to conduct the same assessments. If mobile sensors on the 
instructional platform (e.g., smartphone, tablet, laptop) are inadequate, we might 
devise methods to use more reliable/available data sources automatically. 

10 A fInAl woRD

We close out the discussion of design goals, challenges, and emerging solu-
tions by noting that while the comprehensive review presented in this paper cov-
ers a myriad of topics, it is far from exhaustive. This article serves as a companion 
document to expand on the topics covered in our AERA 2017 talk (Sottilare, 
2017b). Our goal here was to present a state of art and practice in ITS design in 
order to engage the learning research and technology community in the pursuit of 

FIGURE 9
A Mobile Concept for GIFT.
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identified goals. A number of very real challenges are yet to be overcome to real-
ize fully functional AISs that can support authoring, instruction, and evaluation of 
nearly any task domain and do it efficiently and effectively. This article identifies 
a few of the many steps required to realize that goal. Below is a table which sum-
marizes many of the strategies and recommendations made in this article. 
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