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Theories of wetting have a long history and they are intensively used in 
interpreting experimental data. Nevertheless, many basic aspects, such as 
the pinning of a contact line and contact angle hysteresis, are still poorly 
understood. The development of a rigorous consensus theory has suffered 
from concepts that are based on faulty intuitions. These include the force 
interpretation of Young’s equation, the use of the principle of minimizing 
the global free energy, and the concepts of the work of adhesion and the 
mechanical surface tension on a solid. In this paper, the appropriate treat-
ment of the basic ingredients of surface thermodynamics is discussed and 
the route towards the physically justified theoretical approach on wetting 
is outlined.
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1 INTRODUCTION

Theories of contact angles and wettability have been developed for over 
two centuries and the literature on them includes a huge number of publica-
tions. Nevertheless, many basic phenomena, such as the pinning of a con-
tact line and contact angle hysteresis are so poorly understood that even 
their origin is controversial [1, 2]. The development in the field has been 
hampered by many widely-used concepts that are based on intuitions and 
dubious assumptions. 

The coherent state-of-the art can be demonstrated by reviewing the deriva-
tions of Young’s equation, which is the main paradigm of the science of wet-
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ting. Over a period of more than a hundred years, dozens of attempts to prove 
Young’s equation have been published. Yet, as will be outlined below, none of 
them is valid. The problems in these “rigorous” derivations include dubious 
assumptions of mechanical surface tension on a solid, misuse of the Second 
Law of Thermodynamics and an inappropriate assumption of the reversibility 
of contact line displacement. 

Since already the most fundamental foundation of the wetting theory, 
Young’s equation, is under vigorous controversy in the literature, it is no 
wonder that more complex issues, such as the contact angle hysteresis, are far 
from settled. Worse still, there are scientists who believe that they do have a 
solution, even if that solution does not convince others, who may believe that 
they have a solution of their own. Such a separation of wetting science into 
schools makes presentation and publication of novel ideas difficult for every-
one.

In this paper, the problems encountered with the basic ingredients of the 
theory of wetting are analysed, and an attempt to direct future research on the 
right track is made. The discussion is structured in sections, each of which 
deals with a specific wide-spread faulty intuition which has hampered the 
development of a sound physical theory. In each section, suggestions on how 
to deal with the prevailing misconceptions are made, and the appropriate 
theoretical framework for future work is outlined.

2  FAULTY INTUITION: SOLID SURFACE CAN DO LATERAL 
WORK

Prior to Gibb’s development of surface thermodynamics [3], no concept of 
surface energy existed. Thus, Young’s idea of an “appropriate angle of con-
tact” [4] could only be interpreted as an equilibrium of forces at the contact 
line, see Figure 1. 

	 γS = γSL + γL cos θ. (1)

Here γS, γSL and γL are, respectively, the solid-vapor, solid-liquid and liq-
uid-vapor interfacial forces per unit length of the contact line, i.e., surface 
tensions, and θ is the equilibrium contact angle, see Figure 1. In the discus-
sions that follow we refer to the tensions in Figure 1 as “forces”. 

It has sometimes been argued that Young’s equation does not represent a 
balance of forces [5, 6]. However, the exactly opposite view [7] has domi-
nated the literature and was summarized by Gao and McCarthy [8] in their 
extensive review by stating that dealing with Young’s equation in terms of 
surface energies is “a confusing substitution”, and that “This equation is not 
derived or proven, nor does it need to be; it is the simple balance of forces in 
a plane operating on a line”. 
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Clarity to this issue can only be found by proper understanding of the nature 
of the forces in question. Consider two men pulling a rope in opposite directions 
and not moving. Then, there are applied forces that are in equilibrium. Either of 
the men can make the system move when he applies a higher action force than 
required at the equilibrium. This is analogous with the conventional understand-
ing of Young’s force equilibrium. Consider now a man pulling a rope that is fixed 
to a box on a floor, and that the box does not yet move. In this situation, there is 
also equilibrium of forces, but the equilibrium is between the applied force and a 
friction force. As long as the box does not move, these two force vectors point to 
the opposite directions and are of the same magnitude. Obviously, the man can 
make the box move by applying a sufficiently strong force, but the reverse is not 
true, i.e. a box cannot make the man move. Hence, the nature of a friction force is 
different from that of an applied force. Specifically,

 • An applied force is an active force that can do work.

 • A friction force is a passive force that cannot do work.

 • Prior to motion, the friction force equals the applied force and it thus con-
trolled by it.

 • When motion starts, both forces are at their maximum, usually called the 
static friction force. 

The appropriate question now is: What is the nature of forces γS, γL and γLV in 
the classical construction in Figure 1? 

The ability of a surface tensional force to do work on a system can be 
explained as follows. Owing to the lack of counterparts on the other side of 
an interface, particles at the interface are at a higher potential than in the bulk. 
This causes a net perpendicular force that, given that there are no constraints 

FIGurE 1
Classical construction of the force balance at a three-phase contact line between a drop, its 
vapour, and a solid surface. In this scheme, the components of three applied mechanical surface 
tensions γL, γS and γSL and are at equilibrium in the direction parallel to the solid surface, and this 
equilibrium determines the equilibrium contact angle θ.
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to mobility, draws particles from the interface towards the bulk. When the 
particles leave the interface, replacement of them is required in the direction 
parallel to the interface. This mechanism, possible in a system that involves a 
liquid, transfers the potential energy difference that exists in perpendicular to 
the surface, into mechanical work spent in parallel to the surface. Hence, the 
interfaces that involve a liquid can do lateral work, and γL and γSL are thus 
active applied forces. 

On a solid, however, the situation is fundamentally different [3, 9-11]. In 
a solid, atoms are fixed in the crystal lattice and are unable to move from the 
surface to the bulk. Thus, there is no driver for the replacement of surface 
molecules laterally. Consequently, on a solid-gas interface, there is no such 
mechanism, as described above for a liquid, by which the perpendicular 
potential energy difference can be transferred to work spent in parallel to a 
surface. Note that basic mechanics tell us that a force will do work only if it 
has a component in the direction that the object moves. This means that the 
perpendicular net force due to the imbalance across the solid interface cannot 
possibly do work on the system in Figure 1. Therefore, γS is a friction force.

Yet another way to consider the nature of lateral interfacial forces is that 
when a liquid surface does work, the energy for that is taken from spontane-
ously reducing the surface area of the liquid. A solid does not reduce its sur-
face area spontaneously and, therefore, a solid surface cannot do work 
laterally. Because γS is a force that cannot do work on a system, we use a 
different symbol, σS, for it in the discussion that follows. 

That σS is a friction force has two consequences of paramount importance. 
Firstly, Young’s equilibrium cannot be derived by the concept of forces, 
because one of the three operating forces, σS, is merely a consequence of the 
two applied forces γL cosθ and γSL. In a static situation, the friction force 
equals the applied force in magnitude, and this is the reason why Equation (1) 
trivially holds.

Since γL and γSL are material constants, σS is, in fact, determined by θ 
alone, i.e. σS = σS(θ). In other words, the lateral forces operating at the contact 
line do not determine the equilibrium contact angle, but the contact angle 
determines the counter force σS. In the framework of the elasticity theory, σ 
can be interpreted as the elastic reaction force that is caused by the solid 
material being stretched by the action forces. Indeed, by analyzing data on 
elastic deformations of a soft material [12-13] it can be shown also experi-
mentally that σS is a reaction force [14]. The situation at a contact line, inter-
preted in terms of σS, is shown in Figure 2. 

Secondly, a static situation in Figure 2, where two applied forces pull on 
one side of the contact line without an applied force pulling on the other side, 
means that the contact line is pinned by the frictional force against receding. 
In other words, the contact line is fixed so that it will not move inspite of the 
forces applied on the liquid side. Thus, a range of contact angles is possible 
in the static situation. In the analogy of men pulling a box by a rope, this is a 
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situation where the force applied by the men is insufficient to cause motion. 
Only with a sufficiently high force, the box starts to move. At that point, the 
total applied force equals the maximum frictional force, which is determined 
by friction at the bottom of the box. This is an important analogy with the 
contact angle hysteresis, and will be further elaborated in Section 5. 

Obviously, a contact line is pinned against advancing motion too, because 
on the solid side, there is no applied force that could do work and move the 
contact line, whereas there are two applied forces that pull the contact line 
towards the liquid side (see Figure 2).

returning now to Young’s equation, the conclusion from what is above is that 
attempts towards proving Equation (1) by the classical force interpretation are 
invalid. This is simply because the lateral surface tensional forces do not deter-
mine the equilibrium contact angle. The proof must, therefore be sought from the 
surface energy interpretation of Young’s equation. Indeed, numerous attempts 
have been made to that end, as will be discussed in the following section.

3  FAULTY INTUITION: LOCAL EQUILIBRIUM IS SET BY 
GLOBAL EQUILIBRIUM

Young’s equation in terms of scalar specific surface energies ΓS, ΓSL and ΓL

	 ΓS = ΓSL + ΓL cos θ, (2)

was derived by Gibbs [3] using the idea that the total free energy of the sys-
tem is minimized at a certain contact angle. Numerous derivations for differ-
ent system geometries, including a drop on a surface, have subsequently been 
proposed [15-19].

FIGurE 2
Forces at the three-phase contact line. The resultant of the applied force vectors, γL and γSL is 
countered by the force, σ. The tangential component of σ is the friction force σS that equals γSL 
+ γL cosθ. Adopted from [14].
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This idea of analysing the global thermodynamic equilibrium is based on 
the Second Law of Thermodynamics which states that all spontaneous pro-
cesses tend to shift towards the system’s minimum total free energy. There 
are two problems with this approach when applied to wetting. Firstly, the 
systems considered in wetting include the surface of the dry solid. Such a 
surface does not deform spontaneously. Secondly, the spontaneity of a pro-
cess only determines whether or not a process can occur, and does not indi-
cate whether or not the process will occur. In other words, spontaneity is a 
necessary, but not sufficient, condition for a process to occur. Spontaneity of 
a large system to find its total free energy minimum requires that the system 
includes no sub-systems that are not spontaneous. In other words, a global 
system finds its state of minimum energy only when there are no local con-
straints for that to happen.

Considering a drop on a solid, it has been shown that, if the global system 
is at its minimum state in terms of the interfacial energy, then Equation (2) 
results. However, it was pointed out above that the surface energy of dry 
solid, which is included in the analysis of the global system, is not a compo-
nent of the system’s free energy, and that the contact line is pinned. Pinning 
of a contact line is also a well-known empirical fact. Hence, there are local 
constraints at the contact line that prevent a drop from finding its state of 
minimum total free energy spontaneously. Thus, strictly speaking, none of 
the derivations that are based on the principle of minimizing the free energy 
of the global system provide a valid proof of Young’s equation. 

Moreover, these derivations are for specific global geometries, and it 
seems odd that Young’s equation would need to be proven for each geom-
etry separately. As advocated in the review by Gao and McCarthy [8], 
Schwartz [20] argued that physically, the forces at the contact line “operate 
in each phase within a few molecular diameters of the other two phases. 
Neither the state not the geometry of the phase interfaces in the regions 
remote from the line boundary has any direct effect on the contact angle.” 
This point is crucially important in the derivation of Young’s equation, and 
consideration of the local thermodynamic equilibrium at the contact line is 
clearly the only rigorous option. This will be discussed in the following 
section.

4  FAULTY INTUITION: CONTACT LINE DISPLACEMENT IS 
REVERSIBLE

Being at least partly aware of the problems discussed in Section 3, many 
derivations of Young’s equation have been presented based on local thermo-
dynamics at the contact line [21-25]. These derivations are based on virtual 
displacement of the contact line position. As acknowledged in many of these 
papers, a definite requirement for such an approach to be valid is that the 
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displacement of the contact line is reversible. The wide-spread intuition that 
this is indeed the case naturally follows from the classical construction in 
Figure 1, which suggests no constraints on the motion of a contact line. How-
ever, applying such an intuition in the derivation is circular deduction: 
Young’s equation is proved by employing a critical assumption that follows 
from the same equation. 

Worse still, the intuition of a reversible displacement of a contact line is 
false. This can be concluded already from the fact, discussed in Section 3, 
that a contact line is pinned. Because of the pinning, external work is required 
to make a contact line move. This means that contact line motion is a dissipa-
tive process. To outline this crucial aspect more specifically, we emphasize 
the most basic definition of the Gibbsian surface thermodynamics:

Work must be spent when creating new surface.
This work defines the thermodynamic surface energy Γ (Jm-2). Obviously, 

when a three-phase contact line recedes along the solid surface, new solid 
surface is formed behind it. Correspondingly, when a contact line advances, 
new solid-liquid surface is formed behind it. Noting the above cited argument 
[20] on the spatial range of atomic forces, these processes are strictly local. 
Surface creation at the contact lines in the case of a sliding drop is schemati-
cally illustrated in Figure 3.

Since work is spent in creating surface, a frictional force F against which 
the work is done, must exist at a sliding contact line. This is analogous with 
the thermodynamic origin of sliding friction of solids [26]. Consider a liquid 
body of width w moving in complete contact by an increment dx, so that an 
area dA is formed. Then, work dE is spent in creating new surface. From the 
definition of force, we find that the scalar value of the resisting force, when 
creating new surface in the x-direction, is F = dE/dx = Γ dA/dx = Γ w. It fol-
lows that the frictional tension that resists the motion is F/w = Γ.

FIGurE 3
Displacement of a sliding drop. Solid-vapor interface (S,V) disappears and solid-liquid interface 
(S,L) is created at the advancing contact line. Correspondingly, solid-liquid interface disappears 
and solid-vapor surface is created at the receding contact line.
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In other words, the magnitude of the frictional force F is such that the 
related tension equals the thermodynamic surface energy Γ of the interface 
being created. Note again, that the frictional force F cannot do work on the 
system, but the system, when forced to move, must do work against F. Since 
the nature of the contact of a liquid on a smooth solid does not change upon 
initiating motion, the dynamic friction force equals the maximum static fric-
tion force. Note that F is independent of the velocity of the contact line 
motion.

Intuitively, one could argue that when creating new interface behind a 
moving contact line, the surface energy of the disappearing surface on the 
other side of the contact line is available as free energy. In that case, F would 
be related to the difference of the solid and solid-liquid surface energies, and 
one could apply the concept of work of adhesion in analyzing the motion of 
a contact line [25, 27, 28]. However, surface energy is a thermodynamic con-
cept, and in the thermodynamic theory [3], surface energy is not a property 
associated to a volume, but a property of a discrete interface. Therefore, the 
surface energy of the surface that arrives the contact line is not stored any-
where and, thus, cannot be transferred to the other side of the contact line. 
Consequently, upon moving a three-phase contact line, the surface energy of 
the disappearing surface must dissipate into thermal energy. This is analo-
gous to frictional heating [26].

The inevitable conclusion from what is above is that the concepts of sur-
face free energy and reversible work of adhesion are inapplicable in the con-
text of wetting, because contact line motion is a dissipative process. It follows 
that all local derivations of Young’s equation based on a reversible displace-
ment of the contact line are dubious. This, together with the conclusions 
made in the previous sections regarding derivations by the force interpreta-
tion and by the global free energy balance, leaves us with a striking observa-
tion: Young’s equation is the foundation of the science of wettability, and yet, 
there is no valid proof of it. A relief to this situation will be provided in the 
following section.

5  FAULTY INTUITION: DERIVATION OF YOUNG’S EQUATION IS 
COMPLEX

From the discussions in the previous sections three crucial aspects of Young’s 
equation become clear. Firstly, considering Young’s equation as representing 
a balance of lateral forces is problematic and prone to misconceptions about 
the nature of the related phenomena. Secondly, Young’s equation describes a 
small scale local equilibrium based on surface energies, and thirdly, Young’s 
equation cannot be appropriately derived based on displacement of a contact 
line, because a contact line is pinned and its displacement is irreversible. 
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Hence, even the methods utilizing rather complicated calculus [7,19, 29] do 
not provide an appropriate derivation of Young’s equation. This would seem 
to indicate that the problem is mathematically very complex, or that a com-
prehensive proof does not exist. Fortunately, this is not the case.

Due to the pinning of a contact line, the adjustment of a system to the final 
equilibrium at the contact line does not happen spontaneously by lateral 
motion. On the other hand, all parameters in Equation (1), except the contact 
angle, are material constants. Hence, the system at the contact line can find its 
local equilibrium only by the adjustment of the contact angle Θ. In mechani-
cal analogy, the change in Θ towards the equilibrium angle θ is driven by 
generalized force along generalized coordinate Θ.

Of course, the adjustment of Θ has been considered in the previous deriva-
tions, but it has been inappropriately combined with a displacement of the 
contact line. This has been justified e.g. by retaining a constant drop volume. 
Such an argument is poor, not only because the contact line is pinned, but also 
because the equilibrium is strictly local and, thus, unaffected by events far 
from the contact line. It is another matter that external forces may shift the 
contact angle away from its Young’s equilibrium value, as will be discussed 
in Section 6.

We are now in the position to derive Young’s equation appropriately [14]. 
Along the solid surface with a particle surface density ρS, the sum of the sur-
face chemical potentials

 ΣµS = [ΓS – (ΓSL + ΓL cos Θ)] / ρS, (3)

can be minimized only by a change in the contact angle Θ. The minimum, 
at which Θ = θ, is at ΣµS = 0. In its simplicity, this gives Young’s equation, 
Equation (2).

6  FAULTY INTUITION: CONTACT ANGLE HYSTERESIS IS 
ABSENT ON AN IDEAL SURFACE

Gray [27] proposed that the contact angle hysteresis is always caused by sur-
face heterogeneities. This idea, promoted by Joanny and De Gennes [30], 
found its way to text books, e.g. [31], and is widely adopted today. In other 
words, it is presumed that the contact angle hysteresis does not exist on an 
ideally smooth and homogenous surface. This intuition has initiated many 
extraordinary explanations of the origin of contact angle hysteresis, such as 
liquid adsorption and retention, line tension, viscous dissipation, molecular 
rearrangement upon wetting, inter-diffusion, and shape of the disjoining iso-
therms (dozens of references, for review, see [2]). However, as discussed 
above, and by Bomarshenko [32], the irreversibility of contact line motion 
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and the pinning of a contact line reveal that the idea of surface heterogeneity 
as the fundamental origin of the contact angle hysteresis is faulty. 

It was shown in Section 3 that, due to the laws of surface thermodynamics, 
moving a three-phase contact line along a solid surface requires an external 
force. Consequently, upon applying an external force, the contact angle will 
change until the net applied force exceeds the maximum friction force, i.e. 
the force that arises from creating new interface. Then, the system will move, 
and keeping the external force constant, this happens at a constant speed and 
with a constant dynamic contact angle. This is the fundamental mechanism of 
the contact angle hysteresis. 

It is noteworthy that, although Equation (1) cannot be derived by forces, it 
represents a necessary mechanical equilibrium of tensions in parallel to the 
solid surface when γS is appropriately interpreted as σS, i.e., a friction force. 
Obviously, a mechanical equilibrium at the contact line must exist also when 
it moves. The interpretation of frictional force that affects the dynamic con-
tact angles has been made before [33-37], but without understanding its true 
origins, this has remained a qualitative argument.

We will now point the way to quantify the friction force and the contact 
angle hysteresis. Consider a system where an external force, e.g. gravity, 
affects a drop on a solid and alters the contact angle, i.e. changes the term  
ΓL cosΘ in the force balance at the contact line [38]. When the magnitude of 
the external force is such that it changes the contact angle from its static equi-
librium angle to the limiting angle at which motion begins, then the magni-
tude of the lateral external force equals the frictional force F.

Based on the analysis in Section 4, we know the scalar magnitude of F. It 
equals the surface energy Γ of the interface that is being created at the contact 
line. Therefore, when the contact line advances, the decrease in ΓL cosΘ from 
the static equilibrium state is compensated by ΓSL, i.e.

 ΓSL = ΓL (cos θ - cos θa), (4)

where θa is the advancing contact angle.
Similarly, when the contact line recedes, the increase in ΓL cosΘ from the 

static equilibrium angle is compensated by ΓS, i.e.

	 ΓS = ΓL (cos θr - cos θ), (5)

where θr is the receding contact angle.
As discussed in many textbooks, the geometric mean combining rule of 

intermolecular forces provides Berthelot’s rule in the form 

 ΓS / ΓL = [(1 + cos θ) / 2]2. (6)
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Combining Equations (2), (4) and (6), the advancing contact angle θa is 
obtained from

 cos θa = [-(cos θ)2 + 6 cos θ - 1] / 4, (7)

(when θ > 117.7o, then θa = 180o), and the receding contact angle θr from

 cos θr = [(cos θ)2 + 6 cos θ + 1] / 4, (8)

(when θ < 62.3o, then θr = 0o).
Hence, the physical theory [39] outlined above not only explains the 

origin of contact angle hysteresis, but also provides quantitative estimates 
for the dynamic contact angles as the function of the static Young’s equi-
librium contact angle. These predictions are shown in Figure 4. Figure 4 
also includes the available experimental data on these relationships on 
“smooth” surfaces.

Comparing the theory and experiments in Figure 4 shows good quantita-
tive agreement for θa in the whole range of angles. The agreement is also 

FIGurE 4
Advancing (θa, blue) and receding (θr, red) contact angles as a function of Young’s contact angle 
on a smooth surface, θ. The lines show the prediction of the theory. The circles are experimental 
data for water on plasma polymer surface coatings [36], triangles for different water-ethanol 
mixtures on a Si3N4 surface [40], squares for water on untreated and treated PET and PHMS 
surfaces [41] and stars for water on PMMA and PC surfaces [42].
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good for θr at high angles. The large scatter in θr at low angles is due to sorp-
tion of the liquid onto the solid during a receding angle experiment as shown 
by Lam et al. [43]. As to the advancing contact angle θa, the agreement in 
Figure 4 is a strikingly good considering the experimental uncertainties and 
that the surfaces in the experiments may not have been ideally smooth. When 
using the Wilhelmy plate method repeatedly on a slightly rough surface, θa is 
larger for the first immersion and remains at a smaller constant value thereaf-
ter [44]. The circles in Figure 4 represent the first immersion [36], and this 
may explain the small systematic difference with the theoretical curve.

For polar materials, Berthelot’s rule requires an interaction correction factor 
due the non-dispersive interactions across interfaces [45]. That there is, never-
theless, a good agreement in Figure 4 between the predicted and measured θa 
without employing such a correction suggests that the advancing contact angle 
is quite insensitive to variations in the interaction correction factor [29].

These results, together with the fundamental issues discussed in the previ-
ous section, point out that the fundamental origin of the contact angle hyster-
esis has escaped from earlier researchers. This is not to say that other 
mechanisms, particularly liquid adsorption, would not affect the dynamic 
contact angles [43, 46], but Figure 4 shows that they, particularly θa, can be 
predicted theoretically well without considering any other mechanisms than 
surface creation. It is noteworthy that experimentally, the contact line hyster-
esis is observed on all surfaces, even the smoothest and hardest surfaces that 
can be manufactured [47, 48]. This is hard to explain by the conventional 
theory.

roughness of the surface is, of course, an important factor in the contact 
angle hysteresis, as it makes the contact at the solid-liquid interface incom-
plete in the Cassie-Baxter state and thus modifies the geometry of the contact 
line. The theory discussed here can be readily expanded to include textured 
surfaces. This will provide the necessary basic understanding for developing 
e.g. super-hydrophobic surfaces.

7  FAULTY INTUITION: ADVANCING CONTACT ANGLE 
PROVIDES ESTIMATES OF SURFACE ENERGIES BY YOUNG’S 
EQUATION

The surface energies of solids and of the solid-liquid interfaces are commonly 
determined by making contact angle measurements. The practical procedure, 
i.e., Zisman’s method [49], involves a series of liquids by which the critical 
surface energy is extrapolated. As discussed in the previous sections, Young’s 
equation and Berthelot’s rule are valid for the static equilibrium contact 
angle.

Yet, for the last sixty years, measurements of the surface energy of solids 
have been based on the advancing contact angle. The argument behind this 
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procedure has been that “the advancing contact angle is thermodynamically 
significant and can be used in Young’s equation” [50]. This is vague intuition, 
since the thermodynamic significance of θa is not the same as its equality with 
θ. The use of θa has also been defended by arguing that the static and advanc-
ing contact angles should be the same on an ideal surface [51]. This belief 
was shown to be fundamentally false in Section 6 above. A better argument is 
that Young’s equilibrium angle is difficult to obtain due to the contact line 
pinning, and that for practical reasons θa must, therefore, be used [32]. In any 
case, the wide-spread use of the advancing contact angle in determining sur-
face energy of solids is curious, as it is clear from the discussion in Section 6 
that θa and θ are consequences of different equilibria. 

To obtain a consistent solid surface tension by using different liquids, 
empirical corrections to Berthelot’s rule have been devised. The most popular 
of them is the so-called Equation of State [52]

	 ΓS / ΓL = [(1 + cos θa) / 2]2 / e2β(ΓL - ΓS)2

,
 (9)

where	β	is an empirical constant based on a fit to experiments with various solid-
liquid combinations. Equation (6) is derived for the static contact angle, and the 
theory on the dynamic contact angles discussed above agrees well with data when 
applying Equation (6) as such (Figure 4). One then wonders if the empirical cor-
rection in Equation (9) is necessary only because a wrong contact angle is used.

To investigate this, we utilize the data by Kwok and Neumann [52], who 
presented their experimental results on the surface tension of a solid ΓS as a 
function of the advancing contact angle θa measured when using different 
liquids. We wish to find out how consistently ΓS is obtained by varying the 
liquid, when the calculation is based on

 • Berthelot’s rule using θa

 • Equation of State using θa

 • Berthelot’s rule using θ derived by the theory from θa 

As for the latter method, it follows from Equations (2), (6) and (7) that the 
surface energy of the solid can be calculated based on the advancing con-
tact angle as

	 ΓS / ΓL = [2 - (2 - cos θa)
½ ]2

, (10)

Equation (10) is used to obtain the theoretical result in Table 1, where the 
comparison of the consistency of the three calculation methods is shown.

Table 1 shows that, when varying the liquid, the analytical theory pro-
vides equally consistent values of the solid surface tension as the empiri-
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cal Equation of State. The absolute values are quite similar as well. The 
relative standard deviation of the values of ΓS in Table 1 is 4.0% for the 
Equation of State and 4.4% for the theory. This shows that the need to 
correct Berthelot’s rule by empirical equations such as Equation (9) arises 
from inappropriately using the advancing contact angle instead of the 
static contact angle.

We further demonstrate this aspect by considering the scaled surface 
energy of a solid, ΓS / ΓL, as obtained by the Equation of State, for three hypo-
thetical values of the liquid surface energy, 30, 50, and 70 mJ/m2 [52]. In 
Figure 5, these data are compared with the purely theoretical result, showing 
that the theory provides essentially the same result as the empirical fitting 
method. These results indicate that the analytical theory allows determining 
the surface energy of a solid quite accurately based on a measurement with a 
single liquid. This opens the door for simplifying the experimental procedure 
considerably.

TABLE 1
Surface energy ΓS of FC722-coated mica surface calculated based on the advancing contact 
angle θa of various liquids from Berthelot’s rule, Equation of State, and the analytical theory. 
Partly adopted from [52].

Liquid ΓL (mJ m-2) θa (°)
Berthelot’s 
Rule by θa 

ΓS (mJ m-2) 
Equation of State 

Equation (9) 
Equation  

(10) 

Decane 23.88 67.36 11.5 11.9 12.7

1-Pentanol 26.01 72.95 10.9 11.5 12.5

trans-Decalin 27.19 73.38 11.2 11.9 13.0

Hexadecane 27.62 75.94 10.7 11.4 12.6

1-Decanol 28.99 78.84 10.3 11.2 12.5

cis-Decalin 32.32 79.56 11.3 12.4 13.7

Ethyl cinnamate 37.17 86.54 10.5 12.2 13.7

Dibenzylamine 40.80 90.70 10.0 12.2 13.8

Dimethyl sulfoxide 42.68 90.95 10.3 12.9 14.3

1-Bromonaphthalene 44.31 93.81 9.7 12.4 14.0

Diethylene glycol 44.68 94.22 9.6 12.4 14.0

Ethylene glycol 47.55 97.87 8.9 12.1 13.8

Diiodomethane 49.98 101.18 8.1 11.7 13.5

2.2´-Thiodiethanol 56.26 104.56 7.9 12.7 14.0

Formamide 59.08 108.49 6.9 12.0 13.5

Glycerol 65.02 111.73 6.5 12.8 13.8

Water 72.70 118.69 4.9 12.2 13.1
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8 CONCLUSIONS

The analysis of the problems of the prevailing wetting theory and how to 
solve them makes us to draw the following conclusions. These conclusions 
should direct future work.

 • On a solid, there is no independent applied force that balances the capil-
lary forces on the liquid side of the contact line. The force on a solid is a 
friction force which balances the applied capillary forces at the prevailing 
contact angle.

 • Most of the faulty intuitions of wetting originate from the inappropriate clas-
sical interpretation of Young’s equation that three active applied forces are 
effective at the contact line. Should this be true, even the sligthest external 
force would make the contact line move on an ideal surface. This has led to the 
wrong belief that the contact line motion is reversible and that the origin of 
contact angle hysteresis must be found by assuming surface heterogeneities.

 • Derivation of Young’s equation cannot be appropriately done by the prin-
ciple of minimizing the global free energy of a system or by variational 
calculus based on a reversible displacement of the contact line. 

 • In the local system at the contact line, the equilibrium contact angle is the 
free generalized coordinate, and adjusts to the minimum of chemical 
potential a priori. This directly results in Young’s equation. 

 • Motion of a contact line is an irreversible and dissipative process. This 
explains the origin of the contact angle hysteresis.

FIGurE 5
Surface energy of the solid scaled by that of the liquid, ΓS/ΓL, as a function of the advancing 
contact angle θa. The curve is the prediction of the theory, Equation (10), and the data [52] are 
obtained by the empirical Equation of State for three hypothetical values of ΓL, 30 mJm-2 (dots), 
50 mJm-2 (squares) and 70 mJm-2 (triangles).
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 • Contact angle hysteresis is a fundamental phenomenon that occurs already 
on an ideally smooth and homogenous surface. 

 • The limits of overcoming the pinning, and the dynamic contact angles, can 
be quantified and modelled theoretically. This theory of contact angle hys-
teresis can be extended to textured surfaces.

 • The new theory can be used to determine the surface energy of solids more 
easily. Empirical equations, such as the Equation of State, are unneces-
sary, when the static equilibrium contact angle is used. The static equilib-
rium contact angle can be derived from the theory based on the measured 
advancing contact angle.
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