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We demonstrate that chaos can be controlled and converted into periodic 
behaviour in photorefractive ring oscillator via nonlinear feedback and 
find that the period number differs on the account of the feedback strength. 
By increasing the feedback strength the photorefractive ring oscillator is 
converted into period 8 and subsequently into period 4, 2, and 1. Nonlinear 
feedback is suitable for both the photorefractive ring oscillator system and 
spatiotemporal system. Spatiotemporal chaos can be controlled into stable 
periodic states and stable spatial patterns if we choose suitable feedback 
strength. Furthermore we present the synchronization of spatiotemporal 
chaos in two photorefractive ring oscillator systems via nonlinear feed-
back technology. The synchronization of spatiotemporal chaos can be 
achieved by adjusting the feedback strength without any pre-knowledge of 
the dynamic system. Numerical calculation results show that weak noise 
has a slight impact on synchronization, so nonlinear feedback technology 
is suitable in practical photorefractive ring oscillator systems.
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1  INTRODUCTION

Optical patterns and spatiotemporal chaos are typical nonlinear optical phe-
nomena, Firth et al. discovered the spatial pattern and instability in Kerr 
medium for the first time in 1990 [1, 2]. Oppo et al. [3] and Staliunas [4] 
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investigated the formation and evolution of patterns in optical parametric 
oscillators. Since optical patterns and spatiotemporal chaos of photorefrac-
tive oscillators were observed in experiments in 1990 [5], many scholars 
began to investigate the pattern and spatiotemporal chaos of photorefractive 
oscillators by the theoretical analysis and experimental evidence [6–10].

Controlling spatiotemporal chaos and selecting pattern have been investi-
gated in different systems [11–15]. Zhang and Shen [16] investigated  
the transverse pattern of laser oscillation output in a ring cavity in optical 
systems, controlled spatiotemporal chaos into stable patterns in the coupled 
map lattice (CML) system via local and global phase space compressions, 
and restricted the turbulence and spatiotemporal chaos to the desired stable 
patterns successfully in the laser oscillation output in a ring cavity by uniform 
and non-uniform phase space compressions [17]. Yue and Shen [18, 19] 
investigated the optical patterns, controlling and synchronizing spatiotempo-
ral chaos of the coupled Bragg acousto-optic bistable system. Ciofinietc [20] 
successfully selected and stabilized unstable patterns in a CO2 laser system 
by introducing intracavity spatial perturbations which break the cylindrical 
symmetry of the optical cavity. By using several wires instead of a single 
wire, square and hexagonal patterns are obtained. 

The photorefractive crystal and photorefractive effect have many potential 
applications, such as in optical communication, holographic storage and  
optical amplification [21]. The spatiotemporal chaotic phenomenon is  
sometimes harmful, but synchronizing spatiotemporal chaotic signals are 
beneficial when these signals are used to secure communication and holo-
graphic storage; therefore controlling and synchronizing spatiotemporal 
chaos are important subjects in the features and applications of photorefrac-
tive material. Photorefractive ring oscillator is an applicable structure of 
researching photorefractive material, spatiotemporal phenomena such as 
optical vortices, periodic alteration of transverse modes, and spatiotemporal 
chaos were investigated in experiment and theory [22–26]. It is surprising 
that up to now no clear evidence of controlling and synchronizing spatiotem-
poral chaos in photorefractive ring oscillator has been reported. 

The present work investigates the control of spatiotemporal chaos and 
synchronization in the photorefractive ring oscillator. The organization of  
the paper is as follows. Section 2 is the introduction of the photorefractive 
ring oscillator and nonlinear feedback system. Section 3 is the investigation 
of the spatiotemporal chaos control of the photorefractive ring oscillator with 
nonlinear feedback technology. The stable spatial pattern is realized by 
selecting suitable nonlinear feedback intensity; consequently, synchronizing 
spatiotemporal chaos is realized between drive and response systems by 
selecting nonlinear feedback intensity in Section 4, we analyse the influence 
of the random noise and find that the influence of the random noise can be 
decreased by increasing feedback strength. Finally, concluding remarks are 
given in Section 5.
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2  THE SCHEMA OF NONLINEAR FEEDBACK CONTROL

Figure 1 shows a photorefractive ring oscillator that consists of three partially 
reflecting mirrors. The solid state photorefractive medium, which is pumped 
by an external laser beam, is inserted into the cavity. The dynamic equation 
of the photorefractive ring oscillator can be expressed as [27]
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FIGURE 1 
Schematic drawing of photorefractive ring oscillator.
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where In is signal light intensity, α is the absorption coefficient of the pho-
torefractive crystal, R is reflectivity, l is the crystal length, ρ(φn) is loss due  
to the detuning, φn is additional phase, F is Fresnel number of the cavity,  
δ is cavity detuning, θ is the half-angle between the beams, Ω= −w w1 2 ,  
τ is the decay time of the crystal, ξ is saturation value of the photo induced 
index change, λ is laser wavelength, ϕ is phase shift, ϕ0 is a constant phase 
shift related to the nonlocal response of the crystal. When the parameters  

are δ = 0.8,ϕ
π

0 2
= , l = 0.005 m, a = 52, R = 0.92, q = 0.02, l = 632.8 nm, 

x=0.00008 and Wt=1.25, the photorefractive ring oscillator system is  
chaotic [28, 29].

The nonlinear feedback controlling system of the photorefractive ring 
oscillator is shown in Figure 2. According to this controlling system, the  
controlling dynamics is presented as

	 I k I kIn n n+ += −( ) +1 11 	 (7)

where k is the feedback strength, the photorefractive ring oscillator system  
is steered to different periodic orbits by varying the feedback strength  
through period-doubling reverse bifurcation as shown in Figure 3, from 
which we know when the feedback strength is in the region 0.013<k<0.015, 
0.015<k<0.029, 0.029<k<0.155 and k>0.155, the photorefractive ring oscilla-
tor system is Period 8, Period 4, Period 2 and Period 1, respectively.

FIGURE 2 
Block diagram of the nonlinear feedback controlling system of photorefractive ring oscillator.
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3 � CONTROLLING SPATIOTEMPORAL CHAOS AND UNSTABLE 
SPATIAL PATTERN WITH A NONLINEAR FEEDBACK 
METHOD

3.1  Controlling spatiotemporal chaos with nonlinear feedback
The space diffraction effects can lead to the space instability in the photore-
fractive gain medium and light field in the ring cavity interaction. Such a 
nonlinear optical system can be expressed using [30]

	
∂
∂
= ( )+ ∇

E

t
N E iD E2 	 (8)

where N(E) is a nonlinear function of light field interacting with a photore-
fractive crystal, E is electric field intensity, D is space diffraction coupling 
coefficient and Ñ2 is the transverse Laplacian. Using photon flux density 
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where F(I) is a nonlinear function of light intensity, C is constant, Iz is  
the background noise of the light beam. Iz should be evenly distributed on  
the beam cross section in the ring cavity, so if we let Iz=0 and discrete  

FIGURE 3 
The bifurcation diagrams of In versus k.



6	 X. Chen et al.

Equation (9) then we can obtain the coupled map model of light field in  
the ring cavity:

	 I i D f I i
D

f I i f I in n n n+ ( )= −( ) ( )( )+ −( )( )+ +( )( )



1 1

2
1 1 	 (10)

where n=1, 2…N are the discrete steps; i=1, 2…L are the one-dimensional 
(1-D) lattice sites with L being the system length; and the local dynamical 
function f I in ( )( )  is Equations (1) to (6). When the system parameters are 

δ=0.8,ϕ
π

0 2
= , l=0.005 m, a=52, R=0.92, q=0.02, l=632.8 nm, x=0.00008, 

Wt=1.25 and D=0.2; the initial conditions are random numbers in the interval 
[0, 1]; and the boundary conditions are In(0)= In(L+1)= 0 with L= 100, the 
photorefractive ring oscillator system exhibits spatiotemporally chaotic 
behaviours as shown in Figure 4.

Spatiotemporal chaos can be suppressed with nonlinear feedback tech-
nique in the photorefractive ring oscillatory system, the controlled dynamics 
under the influence of nonlinear feedback is expressed as

	 I i k I i kI in n n+ +( )= −( ) ( )+ ( )1 11 	 (11)

Spatiotemporally chaotic behaviours are suppressed to stable periodic orbits 
by varying the value of k. Figures 5(a) to (c) show the local time series for  
the tenth lattice site, they exhibit the stabilization of the system on stable 
Period-8, Period-4 and Period-2 in space with k=0.023, k=0.030 and k=0.050, 
respectively; where the control is initiated at n=8000 and the temporal states 
with n<6000 are left out. Figure 5(d) shows the space-time portrait with 
k=0.050, from which we know that each site is in the same periodic state, but 
with different light intensity. Numerical calculation results prove that the 
maximum of the feedback strength is k=0.130. Spatiotemporal chaos of the 

FIGURE 4 
Space-time evolution of the photorefractive ring oscillator system: (a) space-amplitude plot; and 
(b) space-time diagram.
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photorefractive ring oscillator system is not controlled into Period-1 by non-
linear feedback.

3.2  Controlling unstable spatial pattern with nonlinear feedback
We discrete Equation (9) in two-dimensional (2-D) space and get the dynam-
ical equation of the photorefractive ring oscillator system as

	
I i j D f I i j

D
f I i j f I i j f I i

n n

n n n

+ ( )= −( ) ( )( )+

−( )( )+ +( )( )+
1 1
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		  (12)

where n=1, 2…N are the discrete steps, i, j=1, 2…L are the 2-D lattice sites. 

When the system parameters are δ=0.8,ϕ
π

0 2
= , l=0.005 m, a=52, R=0.92, 

q=0.02, l=632.8 nm, x=0.00008, Wt=1.25 and D=0.2; the initial conditions are 
random numbers in the interval [0, 1]; and the boundary conditions are 
I j I i L I i I L in n n n0 1 0 1, , , ,( )= +( )= ( )= +( )  then the spatial pattern of the 
photorefractive ring oscillator system is shown in Figure 6 (we choose eight 
shades of Color to represent the system states). 

FIGURE 5 
Control result of the photorefractive ring oscillator system with the nonlinear feedback, the time 
series of the tenth lattice site with (a) k=0.023, (b) k=0.030, (c) k=0.050 and (d) space-time 
diagram with k=0.050.
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The unstable spatial pattern of the photorefractive ring oscillator system is 
converted into stable spatiotemporal period under the influence of nonlinear 
feedback. The controlled dynamic equation may be written as

	 I i j k I i j kI i jn n n+ +( )= −( ) ( )+ ( )1 11, , , 	 (13)

The unstable spatial pattern as shown in Figure 6 is converted into stable 
spatiotemporal period by varying k. Figure 7(a) shows the local time series 
for the lattice coordinate (32, 32), from which we know the system is  
Period-2 in the time domain, where the control is initiated at n=600 with 
k=0.100. The spatial distribution of the optical intensity is nonuniform as 
shown in Figure 7(b). Increasing the feedback intensity to k=0.320, two  
periodic orbits gradually close to the final one as shown in Figure 7(c). When 
the feedback intensity is increased to k=0.350 the spatial distribution of  
the optical intensity is uniform except edge regions as shown in Figure 7(d).

4 � SYNCHRONIZATION OF SPATIOTEMPORAL CHAOS  
IN THE PHOTOREFRACTIVE RING OSCILLATOR SYSTEMS

4.1 � Synchronization of spatiotemporal chaos in one-dimensional (1-D) 
space

The schematic diagram of nonlinear feedback synchronization between two 
photorefractive ring oscillator systems is shown in Figure 8. We consider 

FIGURE 6 
The spatial pattern of the photorefractive ring oscillator system. 
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FIGURE 7 
The optical intensity distribution and stable spatial pattern of the photorefractive ring oscillator 
system for (a) k=0.100, (b) k=0.100, (c) k=0.320 and (d) k=0.400.

FIGURE 8 
Block diagram of the nonlinear feedback synchronization.
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two identical photorefractive ring oscillator systems but with different initial 
conditions: one of them is drive system and another is the response system. 
In 1-D space the drive system is described by

	 I i D f I i
D

f I i f I in n n n+ ( )= −( ) ( )( )+ −( )( )+ +( )( )



1 1

2
1 1 	 (14)

and the response system by

	 ′ ( )= −( ) ′ ( )( )+ ′ −( )( )+ ′ +( )( )



+I i D f I i

D
f I i f I in n n n1 1

2
1 1 	 (15)

where In(i) denotes the drive system and ′ ( )I in  the response system. We take 
the nonlinear feedback method as

	 ′ ( )= −( ) ′ ( )+ ( )+ + +I i k I i kI in n n1 1 11 	 (16)

The initial conditions of the drive system and response system are 0.20 and 
0.40, respectively. The other parameters are the same as above. The space-
time portraits of the drive system and response system are shown in Figure 
9(a) and Figure 9(b), respectively. When k>0.340 the drive system and 
response system achieve synchronization as shown in Figure 9(c), the feed-
back is initiated at n=9000 and the temporal states with n<8000 are left out, 
the difference I i I in n+ +( )− ′ ( )1 1  gradually decreases and final equal to zero, 
indicating successful synchronization between the drive system and response 
system. Figure 9(d) is the time series of the response system after synchroni-
zation, from which we know the response system is still chaos.

In order to check the validity of this method, the noise term, J∆℘ , is 
added in the synchronization systems. Here we embed ∆℘  in the response 
system:

	 ′ ( )= −( ) ′ ( )( )+ ′ −( )( )+ ′ +( )( )



 ± ℘+I i D f I i

D
f I i f I in n n n1 1

2
1 1 ∆ 	 (17)

The random noise is in the range (0, 0.005). Here we denote the synchroniza-
tion error, e, to be

	 e
I i I i

I
n n=
′ ( )− ( )+ +1 1

max

	 (18)

Figure 9(e) shows that synchronization error is less than 6% as k=0.350.  
The synchronization error can be decreased by increasing feedback strength, 
Figure 9(f) shows that the identity synchronization can be obtained as  
k=0.600 and ∆℘ =0.005.
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4.2 � Synchronization of spatiotemporal chaos in two-dimensional (2-D) 
space

In 2-D space the drive system is described by

	
I i j D f I i j

D
f I i j f I i j f I i

n n

n n n

+ ( )= −( ) ( )( )+

−( )( )+ +( )( )+
1 1

4
1 1
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, , ,, ,j f I i jn−( )( ) +( )( )



1 1
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FIGURE 9 
Space-time diagram for synchronizing the two photorefractive ring oscillator systems: (a) the 
Space-time portraits of the drive system; (b) the Space-time portraits of the response system;  
(c) the optical intensity difference of the drive system and drive system; (d) the time series of 
the response system after synchronization; (e) the optical intensity difference of the drive  
system and drive response; and (f) the optical intensity difference of the drive system and drive 
response.
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and the response system by 

	
′ ( )= −( ) ′ ( )( )+

′ −( )( )+ ′ +( )( )+
+I i j D f I i j

D
f I i j f I i j

n n

n n
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where In(i, j) denotes the drive system and ′ ( )I i jn ,  the response system. We 
take the nonlinear feedback method as 

	 ′ ( )= −( ) ′ ( )+ ( )+ + +I i j k I i j kI i jn n n1 1 11, , , � (21)

The initial conditions and parameters are the same as above. When k>0.340 
the drive system and response system achieve synchronization as shown in 
Figure 10(a) and Figure 10(b), respectively. Numerical calculation results 
shown that the synchronization effect is similar with 1-D space. 

5  CONCLUSIONS

The result of our numerical simulation demonstrates that spatiotemporal chaos 
in the photorefractive ring oscillator system can be suppressed to different peri-
odic states by choosing appropriate feedback intensity with nonlinear feedback 
technique. The periodic state changes according to the feedback intensity. By 
increasing the feedback intensity, the photorefractive ring oscillator can be con-
trolled into period states through period-doubling inverse bifurcation. Differ-
ence space lattice is in difference periodic states with the same feedback 
strength. When the feedback strength is large enough, all space lattice is peri-
odic 1. In the global and local regions of the photorefractive ring oscillator 

FIGURE 10 
Synchronizing the two photorefractive ring oscillator systems in 1-D space: (a) the optical inten-
sity difference of the drive system and drive response; and (b) the relationship between the drive 
system and response system.
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system, unstable spatial pattern can be controlled into stable spatiotemporal 
period, only if a suitable feedback intensity is chosen. When two identical pho-
torefractive ring oscillator systems have different initial conditions, they can 
achieve accurate chaotic synchronization via nonlinear feedback. Weak noise 
has little effect on synchronization. When the noise strength is less than 6%, the 
synchronization error can be reduced by increasing feedback strength and 
accurate chaotic synchronization can be achieved. Nonlinear feedback tech-
nique has many advantages, since no updated information of the system is 
required, it is not only suitable for one-dimensional (1-D), but also two-dimen-
sional (2-D) plane, the parameter of the system dose not need to change, and 
control can be achieved easily by varying the feedback intensity. We can choose 
any feedback intensity through the optical coupler parts. So nonlinear feedback 
technology is suitable in practical photorefractive system.
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NOMENCLATURE

D	 Space diffraction coupling coefficient, <1
E	 Electric field intensity (N/C)
F	 Fresnel number of the cavity
In	 Signal light intensity 
Iz	 Background noise of the light beam 
k	 Feedback strength
l	 Crystal length (m)
R	 Reflectivity, <1

Greek symbols
a	 Photorefractive crystal absorption coefficient (1/cm)
∆℘ 	 Noise term 
δ	 Cavity detuning
φn	 Additional phase (rad)
ϕ	 Phase shift (rad)
ϕ0	 Constant phase shift related to the nonlocal response of the crystal (rad)
λ	 Laser wavelength (nm)
θ	 Half-angle between the beams (rad)
ρ φn( ) 	 Loss due to the detuning
τ	 Decay time of the crystal (seconds)
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Ω	 Frequency difference (Hz)
ξ	 Saturation value of the photo-induced index change 

Mathematical operators
Ñ2 	 Transverse Laplacian.
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