
Lasers in Eng., Vol. 1, pp. 135–151
Reprints available directly from the publisher
Photocopying permitted by license only

135

*Corresponding author: Tel: +86 (0)571 6374 0072; E-mail: 1911645003@qq.com

© 2018 OCP Materials Science and Engineering
Published by license under the OCP Science imprint,

Old City Publishing, Inc.

Orbital Angular Momentum Density  
of an Elegant Laguerre-Gaussian  
Laser Beam in the Source Region

Y-M. Zhou and G-Q. Zhou*

School of Sciences, Zhejiang A & F University, Lin’an 311300,  
Zhejiang Province, China

Based on the method of the vectorial angular spectrum of a laser beam, an 
analytical expression of the electric field of an elegant Laguerre-Gaussian 
laser beam in source region is derived without any approximation, and the 
corresponding magnetic field is obtained by taking the curl of the electric 
field. By using the obtained expressions of the electromagnetic fields, the 
orbital angular momentum density of the elegant Laguerre-Gaussian laser 
beam can be accurately calculated. The effects of the angular mode num-
ber, the radial mode number and the linearly polarized angle as well as the 
beam waist width on the distribution of the orbital angular momentum 
density of the elegant Laguerre-Gaussian laser beam are investigated, 
respectively. Also, the orbital angular momentum density distribution of 
the propagating part of the elegant Laguerre-Gaussian laser beam is com-
pared with that of the whole laser beam. Upon propagation, the orbital 
angular momentum density difference between the propagating part and 
the whole laser beam decreases. This research is beneficial to the optical 
manipulation with an elegant Laguerre-Gaussian laser beam. 
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1  INTRODUCTION

An elegant Laguerre-Gaussian laser beam is an extension of the standard 
Laguerre-Gaussian laser beam [1]. Higher–order complex source has been 
proposed to generate the elegant Laguerre–Gaussian laser beams [2]. An 
exact closed-form representation of a vector elegant Laguerre-Gaussian wave 



136	 Y-M. Zhou And G-Q. Zhou

packet has been derived [3]. Vortex and anti–vortex compositions of exact 
elegant Laguerre-Gaussian vector laser beams have been expressed in a 
closed analytic form [4]. 

Elegant Laguerre-Gaussian laser beams can be used to describe the axi-
symmetric flattened Gaussian laser beam [5]. The relationship between the 
elegant Laguerre-Gaussian and the Bessel-Gaussian laser beams has been illu-
minated [6]. The propagating properties of the elegant Laguerre-Gaussian 
laser beams in free space [7–9], in turbulent atmosphere [10], in non– 
Kolmogorov turbulence [11], in a uniaxial crystal [12], at a dielectric interface 
[13], by an opaque obstacle [14], through a paraxial ABCD optical system 
[15], through aligned and misaligned paraxial optical systems [16, 17] and in 
apertured fractional Hankel transform systems [18], have all been investigated. 

The vectorial structure of the elegant Laguerre–Gaussian laser beam has 
been demonstrated in the far–field regime [19]. New fractional–order solu-
tions of the paraxial wave equation have been introduced, which smoothly 
connect the elegant Laguerre–Gaussian laser beams of integral–order [20]. 
As the angular mode index changes continuously between integer values, the 
transition of the vortex structure of fractional elegant Laguerre-Gaussian 
laser beams has been analysed in detail [21]. The elegant Laguerre–Gaussian 
laser beams can also be extended to the nonparaxial [22, 23] and the partially 
coherent cases [24–29].

The major advantage of an elegant Laguerre-Gaussian laser beam is that it 
carries the orbital angular momentum. This leads one to focus on studying the 
orbital angular momentum. For instance, the compact expression for the 
derivatives of an elegant Laguerre- Gaussian laser beam has been presented 
to study the resulting orbital angular momentum and phase structure [30]. 
The expression of the orbital angular momentum density of the elegant 
Laguerre-Gaussian laser beam has been derived [31], which is applicable to 
both the near and far fields. According to the value of the axial propagation 
distance z, the beam propagation region is divided into three regions [32]: the 
source region where z is less than or comparable to the optical wavelength, 
the near-field where z is larger than a few wavelengths, and the far field where 
z approaches to infinity. Among them, one may be more curious to know the 
orbital angular momentum density distribution of the elegant Laguerre-
Gaussian laser beam in the source region, which is just the purpose of this 
paper. 

As the overall transverse component of the orbital angular momentum is 
zero, here only the longitudinal component of the orbital angular momentum 
density is considered. The effects of the beam parameters on the orbital angu-
lar momentum density distribution of the elegant Laguerre-Gaussian laser 
beam in the source region are discussed. Also, the orbital angular momentum 
density distribution of the propagating part of the elegant Laguerre-Gaussian 
laser beam is compared with that of the whole beam.
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2 � ORBITAL ANGULAR MOMENTUM DENSITY OF AN ELEGANT 
LAGUERRE-GAUSSIAN LASER BEAM IN THE SOURCE REGION

In the cylindrical coordinate system, the z–axis is taken to be the propagation 
axis. The elegant Laguerre-Gaussian laser beam is assumed to be linearly 
polarized. The elegant Laguerre-Gaussian laser beam in the source plane 
z = 0 takes the form as
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where w0 is the Gaussian waist size, and Ln
m  is the associated Laguerre poly-

nomial. n and m are the radial and angular mode numbers, respectively. 
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 describes the linearly polar-

ized state, and a is the linearly polarized angle. The time dependent factor 
exp(–iwt) is omitted in the equation (1), and w is the angular frequency. The 
exact description of the elegant Laguerre-Gaussian laser beam should be 
directly initiated from Maxwell’s equations. Moreover, the method of the 
vectorial angular spectrum is used to resolve Maxwell’s equations. Therefore, 
the propagating electric field of the elegant Laguerre-Gaussian laser beam in 
the source region can be expressed in the form of the vectorial angular spec-
trum [33]:
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where b p q b2 2 2 1 2 2 1 21= + = −( ) ; ( )/ /γ ; ϕ = arctan( / );q p  ex, ey and ez are the 
three unit vectors in the x-, y-, and z-directions, respectively; p/l and q/l are 
the transverse frequencies; and Ax ( , )b ϕ  and Ay b( , )ϕ  are the x- and y-com-
ponents of the vectorial angular spectrum. Ax ( , )b ϕ  is given by the Fourier 
transformation of the x-component of initial electric field [34]:
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We recall the following mathematical formulae [34]: 
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where Jm is the mth order Bessel function of the first kind and f = 1/(kw0). 
k = 2p/l is the wave number. The x-component of the vectorial angular spec-
trum is found to be
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The y-component of the vectorial angular spectrum yields 
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The x–component of the optical field of the elegant Laguerre–Gaussian laser 
beam in the source region yields

	

E im
f s

n m

n lx

l s

s m s m
s

l

( ) cos exp( )
( )

!
ρ θ α θ, ,z =

− +
−




+

+ + + +
=
∑ 1

22 1 2 2
0





×
+
−







−






=

+∞

∑

∫

l

n

s m
m

l m

l s
b

b

f
J kb i

0

2
2

20 4
exp ( ) exp(ρ kk z bdbγ )

	 (9)



	O rbital Angular Momentum Density	 139

By transforming the integral variable from b to g, Equation (9) can be rewrit-
ten as
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As the integration is inconvenient to perform, one can consider the following 
Taylor expansions [34]
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The x-component of the optical field of the elegant Laguerre-Gaussian laser 
beam in the source region turns out to be
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To obtain the analytical expression, we first perform the propagation term [34]
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with I0
pro  and I1

pro  being given by 
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where j is an arbitrary integer and F(⋅) is the Faddeev function [35]. Secondly, 
the evanescent term yields [34]
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where Dj+1(⋅) is related to the parabolic cylinder function. The recurrence 
relation of Dj+1(⋅) is found to be [33]
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Finally, the x-component of the optical field of the elegant Laguerre–Gauss-
ian laser beam in the source region can be analytically expressed as 
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where Ex
pro , ,( )ρ θz  and Ex

eve , ,( )ρ θz denote the propagating and the evanes-
cent parts, respectively. The y–component of the optical field of the elegant 
Laguerre–Gaussian laser beam in the source region turns out to be 
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The longitudinal component of the optical field of the elegant Laguerre–
Gaussian laser beam in the source region reads as 

E E E

i

f

z z z

s m

( ) ( ) ( )

cos( )
exp

ρ θ ρ θ ρ θ

θ α

, , , , , ,pro evez z z= +

= −
−

−+ +2 2 2

11

4

1 1

2

2

2 1

2 1

f
im

m s u kl s u v m u

s m u

+






×
− + + ++ + + + +

+ + +

θ

ρ( ) ( )!( )
( ) ss u v m u m s u v

n m

n

v

m s u

us

l

l

n

! ! !( )!( )!+ + + + + −

×
+

=

+ + +

=

∞

==
∑∑∑∑

1 10

1

000

−−






+
−







−( )
l

l m

l s
I Iv v2 2
pro eva

	 (22)

According to Maxwell’s equations, the magnetic field of the elegant Laguerre–
Gaussian laser beam in the source region turns out to be 
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where m0 is the magnetic permeability of vacuum. The Poyting vector of the 
elegant Laguerre–Gaussian laser beam in the source region is given by
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where the angle brackets indicate an average with respect to the time, and the 
asterisk denotes the complex conjugation. Therefore, the orbital angular 
momentum density of the elegant Laguerre–Gaussian laser beam in the 
source region is found to be [36, 37]

	 Jz z( ) [ ( )]ρ θ ε µ ρ θ, , , ,z z= ×0 0 r S 	 (25)

where r = xex + yey + zez and e0 is the electric permittivity of vacuum.

3  NUMERICAL CALCULATIONS AND ANALYSES

The orbital angular momentum density of the elegant Laguerre–Gaussian 
laser beam in a reference plane is determined by the angular mode number, 
the radial mode number and the linearly polarized angle as well as the beam 
waist width. Now, the effect of the angular mode number on the distribution 
of the orbital angular momentum density is investigated firstly, as shown in 
Figure 1. w0 = l/2, n = 3, a = 0, and z = l/16 in Figure 1. When m = 0, the 
orbital angular momentum density is composed of five layers. Each layer has 
four lobes. Both the areas and the magnitude of the positive and the negative 
angular momentum densities are equivalent. Therefore, the overall angular 
momentum density in the reference plane is zero. When m > 0, the distribu-
tion of the orbital angular momentum density is composed of two symmetri-
cal lobes, which are located in the horizontal direction. With the angular 
mode number increasing, the magnitude of the orbital angular momentum 
density increases rapidly, and the pattern size of the orbital angular momen-
tum density also slowly augments. The shape of the distribution of the orbital 
angular momentum density also slightly changes with the angular mode 
number. 

Figure 2 represents the influence of the radial mode number on the distri-
bution of the orbital angular momentum density. w0 = l/2, m = 2, a = 0, and 
z = l/16 in Figure 2. With the increasing in a radial mode number, the magni-
tude of the orbital angular momentum density increases, but the pattern size 
of the orbital angular momentum density decreases. The shape of the distri-
bution of the orbital angular momentum density also changes slightly with 
the increase of radial mode number. 

Figure 3 denotes the effect of linearly polarized angle on the shape, the 
location, and the magnitude of the distribution of the orbital angular momen-
tum density. m = 2, n = 3, w0 = l/2, and z = l/16 in Figure 3. When the lin-
early polarized angle varies, the change in the shape of the distribution of the 
orbital angular momentum density is not very apparent. When a = 0, the dis-
tribution of the orbital angular momentum density is located at the x-axis, as 
shown in Figure 3. As the linearly polarized angle increases, the distribution 
of the orbital angular momentum density rotates anticlockwise and its rota-
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FIGURE 1 
The orbital angular momentum density of the elegant Laguerre-Gaussian laser beam in  
the reference plane z = l/16. w0 = l/2, n = 3, and a = 0. (a) m = 0. (b) m = 1. (c) m = 2.  
(d) m = 3. 

FIGURE 2 
The orbital angular momentum density of the elegant Laguerre-Gaussian laser beam in the refer-
ence plane z = l/16. w0 = l/2, m = 2, and a = 0. (a) n = 2. (b) n = 3. (c) n = 4. (d) n = 5. 
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tion angle is the same as the linearly polarized angle. The magnitude of the 
orbital angular momentum density in the two cases of a = 0 and a = p/2 are 
smaller than that in the other two cases of a = π/3 and a = 5p/6. Figure 4 
shows the effect of the beam waist width on the distribution of the orbital 
angular momentum density. m = 2, n = 3, a = 0, and z = l/16 in Figure 4. 
Both the magnitude and the pattern size of the orbital angular momentum 
density increase with the increase of beam waist width. As the beam waist 
width varies, the shape of the distribution of the orbital angular momentum 
density also changes. 

The orbital angular momentum density of the elegant Laguerre-Gaussian 
laser beam in the different reference plane is shown in Figure 5. w0 = l/2, 
m = 2, n = 3, and a = 0 in Figure 5. Upon propagation, the profile of the dis-
tribution of orbital angular momentum density expands, and the magnitude of 
the orbital angular momentum density decreases. Moreover, the shape of the 
distribution of the orbital angular momentum density changes obviously at 
first, and then tends to be stable during propagation. 

Figure 6 represents the orbital angular momentum density of the propagat-
ing part of the elegant Laguerre-Gaussian laser beam in the reference plane 
z = l/16. w0 = l/2, n = 3, and a = 0 in Figure 6. By comparing Figure 6 with 
Figure 1, the magnitude of the orbital angular momentum density of the prop-
agating part of the elegant Laguerre-Gaussian laser beam is far smaller than 

FIGURE 3 
The orbital angular momentum density of the elegant Laguerre-Gaussian laser beam in the refer-
ence plane z = l/16. w0 = l/2, m = 2, and n = 3. (a) a = 0. (b) a = p/3. (c) a = p/2. (d) a = 5p/6.
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FIGURE 4 
The orbital angular momentum density of the elegant Laguerre-Gaussian laser beam in the refer-
ence plane z = l/16. m = 2, n = 3, and a = 0. (a) w0 = l/4. (b) w0 = l/2. (c) w0 = 3l/4. (d) w0 = l.

FIGURE 5
The orbital angular momentum density of the elegant Laguerre-Gaussian laser beam in the dif-
ferent reference planes. w0 = l/2, m = 2, n = 3, and a = 0. (a) z = l/16. (b) z = l/8. (c) z = l/4. (d) 
z = l/2.
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FIGURE 6
The orbital angular momentum density of the propagating part of the elegant Laguerre-Gaussian 
laser beam in the reference plane z = l/16. w0 = l/2, n = 3, and a = 0. (a) m = 0. (b) m = 1.  
(c) m = 2. (d) m=3. 

that of the whole laser beam. Moreover, the shape of distribution of the orbital 
angular momentum density of the propagating part of the elegant Laguerre-
Gaussian laser beam is different from that of the whole laser beam. There-
fore, the evanescent part of elegant Laguerre-Gaussian laser beam should be 
taken into account in the source region. 

Figure 7 shows the orbital angular momentum density in the section plane 
y = x of the propagating part (the red solid curve) and the whole laser beam 
(the blue solid curve) in the different observation planes. w0 = l/2, n = 3, 
m = 1, and a = 0 in Figure 7. As J yz ( )0, , ,z and J xz ( ), , ,0 z  are equal to zero, 
the distribution of the orbital angular momentum density in the section plane 
y = x is examined. The observation planes are z = l/16, z = l/2, z = 2l, and 
z = 5l, respectively. Upon propagation, the difference between the orbital 
angular momentum densities of the propagating part and the whole laser 
beam decreases. When the ratio z/l is large enough, the evanescent part of the 
orbital angular momentum density can be neglected.

4  CONCLUSIONS

Based on the method of the vectorial angular spectrum of a laser beam, an 
analytical expression of the electric field of the elegant Laguerre-Gaussian 
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laser beam in free space is derived without any approximation. By taking the 
curl of the obtained electric field, the magnetic field of the elegant Laguerre–
Gaussian laser beam can be obtained. By using the obtained expressions of 
the electromagnetic fields, the orbital angular momentum density of the ele-
gant Laguerre-Gaussian laser beam can be accurately calculated in the source 
region. As the overall transverse component of the orbital angular momentum 
is zero, here only the longitudinal component of the orbital angular momen-
tum density is considered. The effects of the angular mode number, the radial 
mode number, the linearly polarized angle as well as the beam waist width on 
the distribution of the orbital angular momentum density of the elegant 
Laguerre-Gaussian laser beam in the source region are examined. As the 
angular mode number increases, the magnitude of the orbital angular momen-
tum density increases rapidly and the pattern size of the orbital angular 
momentum density slowly augments. With the increasing in a radial mode 
number, the magnitude of the orbital angular momentum density increases, 

FIGURE 7
The orbital angular momentum density in the section plane y = x of the propagating part (the red 
solid curve) and the whole laser beam (the blue solid curve) in the different observation planes. 
w0 = l/2, n = 3, m = 1, and a = 0. (a) z = l/16. (b) z = l/2. (c) z = 2l. (d) z = 5l.
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but the pattern size of the orbital angular momentum density decreases. The 
shape of the distribution of the orbital angular momentum density is nearly 
insensitive to the angular and the radial mode numbers. The linearly polar-
ized angle affects the shape, the location, and the magnitude of the distribu-
tion of the orbital angular momentum density. As the linearly polarized angle 
increases, the distribution of the orbital angular momentum density rotates 
anticlockwise and its rotation angle is the same as the linearly polarized 
angle. With the beam waist width increasing, the magnitude and the pattern 
size of the orbital angular momentum density increase, and the shape of the 
distribution of the orbital angular momentum density also changes.

The influence of the axial propagation distance on the distribution of the 
orbital angular momentum density of the elegant Laguerre-Gaussian laser 
beam is also investigated. Upon propagation, the profile of the distribution of 
orbital angular momentum density expands and the magnitude of the orbital 
angular momentum density decreases. Meanwhile, the shape of the distribu-
tion of the orbital angular momentum density changes obviously at first and 
then tends to be stable. Finally, the distribution of the orbital angular momen-
tum density of the propagating part of the elegant Laguerre–Gaussian laser 
beam is compared with that of the whole laser beam. The magnitude of the 
orbital angular momentum density of the propagating part of the elegant 
Laguerre–Gaussian laser beam is far smaller than that of the whole beam. 
Moreover, the shape of distribution of the orbital angular momentum density 
of the propagating part of the elegant Laguerre–Gaussian laser beam is differ-
ent from that of the whole laser beam. Upon propagation, the difference 
between the orbital angular momentum densities of the propagating part and 
the whole laser beam decreases. This research is beneficial to the optical trap-
ping, the optical guiding, and the optical manipulation with an elegant 
Laguerre–Gaussian laser beam. 

ACKNOWLEDGMENTS

This research was supported by the Zhejiang Provincial Natural Science 
Foundation of China under Grant No. LY16A040014 and the National Natu-
ral Science Foundation of China under Grant No. 11574272.

NOMENCLATURE

Dj+1	 Parabolic cylinder function

ex	 Unit vector in the x–direction

ey	 Unit vector in the y–direction

ez	 Unit vector in the z–direction
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F	 Faddeev function

j	 Arbitrary integer

Jm	 mth order Bessel function of the first kind

k	 Wave number (1/m)

Ln
m 	 Laguerre polynomial

m	 Angular mode number

n	 Radial mode number

w0	 Gaussian waist size (m)

Greek symbols 

a 	 Linearly polarized angle (degree)

e0	 Electric permittivity of vacuum (F/m)

q	 Azimuth angle (degree)

l	 Optical wavelength (m) 

m0	 Magnetic permeability of vacuum (N/A2)

r	 Radial coordinate (m) 

w	 Angular frequency (Hz)
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