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A one-dimensional (1-D) beam array consists of off-axis Gaussian-Schell 
model (GSM) beams is studied. Based on the extended Huygens-Fresnel 
principle, the analytical expressions for the average intensity, the mean-
squared beam width and the far-field angular spread of the GSM beam 
array propagating through atmospheric turbulence in a slanted path are 
derived. Results show that the beam width broadening can be improved 
by choosing a proper optical wavelength, initial waist width and correla-
tion length of the source. With the increasing number of the individual 
beams which compose the array, the far-field angular spread will increase. 
The conclusion is exact the opposite when the propagation happened in 
free space atmosphere.
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1 INTRODUCTION

Due to the advantages like low cost, high directionality and high-rate data 
capacity, the propagation of laser beams through atmospheric turbulence  
has attracted considerable attention recently, which is an important subject 
for many applications, such as remote sensing, imaging and tracking [1–4]. 
But during the propagation, the laser beams will be greatly affected by turbu-
lence, which will cause intensity fluctuations, intensity fading, additional 
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beam spreading, etc., directly affecting the quality and stability of the propa-
gation [5]. Clearly, the study on this subject has been attached with great 
practical significance and urgency. Much work that concerns the propagation 
properties of the laser beams through atmospheric turbulence has been car-
ried out so far [6–11]; however, most of these studies have been restrained  
to the cases of the horizontal path [12–13], while the slanted path is more 
important and more promising in many applications, such as deep-space and 
ground-satellite optical communications [14]. 

The case of the slanted path is taken as the study object in this paper. Since 
partially coherent beams are less sensitive to the effects of turbulence [15] 
and the beam combination [16] is a good way to achieve high system powers, 
a one-dimensional beam array consisting of M individual off-axis Gaussian 
Schell (GSM) model beams is selected as the light source. 

Based on the extended Huygens-Fresnel principle, the analytical expres-
sion for the received intensity [17], the mean-squared beam width [18] and 
the far-field angular spread [19] in a slanted path are derived.

2 PROPAGATION EQUATION

We assume in Figure 1 that a one-dimensional (1-D) beam array in rectan-
gular symmetry consists of M individual off-axis Gaussian Schell (GSM) 
model beams positioned at the plane z = 0 whose separate distance is set to 
xd. It is obvious that the nature of the source determines how the beam 
behaves [20]. In this paper, the M individual sources are assumed to be 
uncorrelated. The cross-spectral density function of the individual beam, 
W(0), can be expressed as
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FIGURE 1 
Sketch of the beam array in rectangular coordinate system.
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where w0 is the original beam waist width, σ0 is the correlation length and 
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In order to simplify the calculation, M is considered as an odd number and 
we set the centre of the beams at the point of (mxd, 0). As the M individual 
GSM beams are uncorrelated, the superposition of the intensity at the plane 
z = 0 is derived:
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Based on the extended Huygens-Fresnel principle, the cross-spectral density 
function of the GSM beams at the plane of z = L can be expressed as
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where k is the wave number associated with the frequency ω or related to  
the wavelength λ, L is the propagation distance of the slanted path and  
the subscript m denotes the average over the ensemble of the turbulent 
medium [21]:

 exp , , exp ,* ’ ’ ’ ’y y yx x x x D x x x x
m

1 1 1 1 1 2 1 205( )+ ( )



{ } = − −( )




 (4a)

or

 

exp , ,

exp

* ’ ’

’ ’ ’ ’

ψ ψx x x x

x x x x x

m
1 1 1 1

1 2

2

1 2

( )+ ( )



{ }

≅ −
−( ) + −( ) 11 2 1 2

2

0
2

−( )+ −( )




















x x x

ρ

 (4b)

where D x x x xy ( , )’ ’
,1 2 1 2- -  is the Rytov’s phase structure function [22], 

y( ’, )x x  is the random part of the complex phase which denotes the atmo-
spheric turbulence effects on the spherical waves and ρ0 is the spatial coher-
ence radius of a spherical wave and can be expressed as 
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where Cn
2  is the altitude-dependent structure constant, h is the altitude 

from the ground and H is assumed as the altitude between the source plane 
and the receiver. Now, ξ denotes the zenith angle, and therefore L can be 
expressed as

 L H= secz  (7a)

and z can be expressed as

 z h= secz  (7b)

Radio communication sector of the International Telecommunication  
Union (ITU-R) describes the altitude-dependent structure constant like  
this [23]:
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where V v vg g= + +( . . ) /2 1 230 69 348 91  denoting the wind speed along the ver-
tical path and vg denotes the ground wind speed. The typical value of  
C0 is 1.7 × 10-14 m-2/3. For convenience, we set vg = 0 in this paper.

The W(0) of the beam at the plane of z = 0 is expressed in Equation (1). 
Using the integral formula we can obtain
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Upon substituting Equation (1) into Equation (3) and letting x1 = x2 = x,  
we obtain the intensity expression of the GSM beams through atmospheric 
turbulence, Im, after tedious integral calculations:

 I x z W x x zm m, , ,( )= ( )  (10a)
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with α being the coherence parameter. The superposition of the intensity 
turns out to be
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From Equation (12a) and Equation (12b) we can see that the intensity  
distribution of the beams depends on the refraction index structure constant 
Cn

2 , separation distance xd, propagation distance z and beam numbers M.
In this section we will use software to illustrate the propagation of the 

beams through atmospheric turbulence. Here λ  =  1550 nm, w0 =  0.03 m, 
σ0 = 0.03 m, xd = 0.04 m, C0 = 1.7 × 10-14 and ξ = π/3. When the multiple 
beams are uncorrelated, the intensity can be obtained by the superposition of 
the intensity of the M individual beams [22]. Figure 2 shows the average 
intensity distribution of GSM beams through turbulence for different M 
value.
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FIGURE 2 
Graphs showing the intensity distribution of the beams with sources uncorrelated for (a) M = 1 
and (b) M = 7 for propagation distances of z = 30 km and z = 60 km.
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From Figure 2(a), it is obvious that the intensity is a Gaussian like profile 
in turbulence in this situation. The propagation altitude is set to 15 and 30 km 
with the zenith angle of ξ = π/3; that is, the propagation distance z is 30 and 
60 km. 

In Figure 2(a), the value of M is set to 1, which means the single beam case 
is taken into consideration. From the curve we see that the intensity decreases 
with the increasing propagation distance z. When propagation distance z 
increases from 30 to 60 km, the curve indicates that the beams have been 
expanded obviously as the peak value decreases. Figure 2(b) gives the  
intensity distribution of the multiple beams case when M is set to 7. By com-
parison, the curve in Figure 2(b) is similar to the one in Figure 2(a). After 
30 km propagation, the peak value of the dashed curve reduces to almost  
half of the maximum in Figure 2(a) and Figure 2(b). If we keep on increasing 
the M value, the ratio will increase. 

This means if we change the number of the individual beams, the far-field 
intensity distribution will be influenced. The greater the M value is, the 
smaller the loss of the optic signal attenuation is proportionately. When M 
increases to a certain value, the loss proportion will reach an upper limit. If 
certain value is exceeded, the loss ratio will reach a threshold, which will not 
be changed any more. Depending on the parameter settings in this case, the 
certain M value is 27. 

In Figure 3, we plot the intensity profiles of the beams with different  
wavelengths at h = 40 km. The calculation parameters are w0 = 0.02 m, 
σ0 = 0.01 m and ξ = π/3. The other parameters are the same as those of  
Figure 2. As indicated in Figure 3, the peak value of the average intensity 
decreases with the increasing wavelength. In contrast, the full width at half 
maximum (FWHM) of the curve increases with the increasing wavelength.  
In Figure 3(b), the differences between the three curves become smaller  
when compared to Figure 3(a), which means that the 1-D beam array can 
reduce the effect of wavelength changes to the intensity distribution. 

When λ  =  1550 nm and M =  7, the altitude is set to 40 km. While  
other parameters are the same as those of Figure 3, we change the value of 
the beam waist width to achieve Figure 4. From Figure 4 below, we can see 
that the parameter w0 of the source greatly determines how the beam 
behaves. When the original beam waist width is w0 = 0.01, w0 = 0.03 and 
w0 = 0.06 m the average intensity will increase with the increasing beam 
waist width. Selecting the appropriate beam waist width value can help  
us get the intensity we need. And Figure 4 indicates that, with the increas-
ing beam waist width, the energy of the laser beams is relatively more  
concentrated. 

In Figure 5 we plot the intensity profiles of the beams with different zenith 
angles. The angles are ξ = 0, ξ = π/6 and ξ = π/4. The other calculation 
parameters are the same as those of Figure 3. As can be seen, the average 
intensity decreases with increasing zenith angle. The reason is that as the 
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FIGURE 3
Graphs showing the average intensity of the GSM beams through turbulence in a slanted path at 
an altitude of 40 km for different wavelengths of λ = 780 nm, λ = 1064 nm and λ = 1550 nm 
when (a) M = 1 and (b) M = 7.
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FIGURE 4
Graph showing the average intensity of the GSM beams through atmospheric turbulence in a 
slanted path for different initial beam waists of w0 = 0.06 m, w0 = 0.03 m and w0 = 0.01 m.

FIGURE 5 
Graph showing the average intensity of the GSM beams through atmospheric turbulence in a 
slanted path for different zenith angles at the altitude of 40 km, where the zenith angle is ξ = 0, 
ξ = π/6 and ξ =  π/4.
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zenith angle increases while the altitude keep invariable, the propagation  
distance increased equivalently. With longer distance, the intensity will be 
more affected by turbulence.

3 MEAN-SQUARED BEAM WIDTH 

The mean-squared beam width is always introduced as a basic physical  
quantity to describe the characteristics of the laser beam. It is defined as
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Upon substituting Equation (12b) into Equation (13) and performing integra-
tions, we obtain
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The width of the beams propagating through turbulence when the  
distance between the source and the receiver increases is shown in  
Figure 6 for the superposition of the intensity, where we take w0 = 0.01 m, 
σ0 = 0.03 m, xd = 0.04 m, C0 = 1.7 × 10-14, M = 5 and ξ = π/3. Indicated 
in Figure 6, the solid curve denotes the beam width in turbulence ( Cn

2  
varies with the altitude gradually) and the dashed curve denotes the beam 
width in free space ( Cn

2  = 0). We can see that the beam width broadened 
significantly as the distance increases, the solid curve grows faster than 
the dashed one.

Comparing the two situations we can conclude that it is only possible to 
change the wavelength parameter at a time while keeping the other parame-
ters constant. In free space the broadening of the beam is very weak, which is 
almost independent of the wavelength. In turbulence, if the distance keeps 
increasing to 30 km, the curve will accelerate upward. For the same set of 
parameters, when the wavelength is set to 1064 nm, the broadening of the 
optical signal is more than the 1550 nm case, which means that the beam 
width broadening can be improved by choosing proper optical wavelength  
of the source. From the propagation altitude of 20 to 40 km, the beam width 
increases by almost 37%.
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4  ANGULAR SPREAD OF THE GAUSSIAN-SCHELL MODEL 
(GSM) BEAMS IN TURBULENCE

In this part the far-field angular spread of GSM beams is studied. Beam direc-
tionality is chosen as the characteristic parameter [23]. The angular spread, 
θsp, of the GSM beams propagating through turbulence turns out to be [21]
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FIGURE 6 
Graph showing the beam width of the GSM beams through atmospheric turbulence in a slanted 
path for λ = 1550 nm and λ = 1064 nm with Cn

2  = 0.
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Upon substituting Equation (16) into Equation (15b) we obtain
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where
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Equation (19) shows that the angular spread of the GSM beams is determined 
by beam parameters and the altitude-dependent structure constant. The first 
and the second term in Equation (19) represent the angular spread of GSM 
array beams in free space, which is dependent on the beam parameters. In the 
far-field, the influence of the beam parameters will be weakened, the Fz will 
dominate Equation (19) for the angular spread and Fz is independent of the 
coherence parameter. 

The angular spread of the GSM beams versus the propagation distance z 
with different M value is shown in Figure 7. In free space, the far-field angu-
lar spread decreases with the increasing M value. While in turbulence, it 
shows that the angular spread rises with the increasing M value and the shape 
of the growth curve is similar to each other. The curve growth is fast in the 
initial period (0 to 10 km), but slow in later period (10 to 30 km). When z 
increases to 35 km, the curve flattens out and stops growing gradually. When 
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the curve is almost horizontal, the far-field divergence angle are depicted. 
This can be explained as follows. On the one hand, in the far-field, the value 
of the distance z is relatively large, but the altitude-dependent structure  
constant keeps on decreasing to a small value. Under this circumstance, the 
product of z and Fz will approach a steady value at one point. On the other 
hand, when the product is large enough to dominate the value of θsp, the value 
will hardly be affected by the first and second term in Equation (19). So the 
later part of the curve becomes flat when the steady point reaches.

Other cases are compared with the case of the single beam (M = 1) one by 
one. When M = 3, the angular spread is 2.236 times as much as the single 
beam case, and the number is 3.605 when M = 13 respectively. As it can be 
seen from the data, we know that with the increasing M value, the angular 
spread increases, but the increase rate is decreased by degrees.

The angular spread of the GSM beams versus the initial beam width is 
shown in Figure 7. The propagation distance is set to 10 km, the other calcula-
tion parameters are M = 7, σ = 0.01 m and λ = 1550 nm. From Equation (19) 
it is obvious that the angular spread decreases with the increasing the original 
beam waist. As indicated by Figure 7, the curve falls into two parts. The first 

FIGURE 7
Graph showing the angular spread versus the propagation distance with different M values.
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part dropping steeply when the original beam waist is smaller than 0.15 m and 
later part dropping slowly until the curve runs nearly parallel to the horizontal 
axis.

5 CONCLUSIONS

The propagation of an incoherent Gaussian-Schell model (GSM) beam array 
through atmospheric turbulence in a slanted path has been investigated. The 
average intensity, the mean-squared beam width and the angular spread of 
the beams are derived. It has been shown that the intensity is a Gaussian- 
like profile in turbulence and the loss of the optic signal attenuation will get 
smaller proportionately when the number of individual sources increases. 
By studying the parameters of the source we know that the parameters  
will greatly determine how the beam behaves and the beam width broaden-
ing can be improved by choosing a proper optical wavelength, initial waist 
width and correlation length of the source. As can be seen from the study  
of the far-field angular spread, we know that with the increasing the number 
of individual sources, the angular spread will increase, but the increase  
rate decreases by degrees. The conclusion is exact the opposite in free space 
situation.  

NOMENCLATURE

Cn
2  Altitude-dependent structure constant 

h Altitude from the ground (km)
H  Assumed as the altitude between the source plane and the receiver 

(km)
Im  Intensity expression of the GSM beams through atmospheric turbu-

lence
k Wave number 
L Propagation distance of the slanted path (m)
M Beam numbers
vg Ground wind speed (km/h)
V Wind speed along the vertical path (km/h)
w0 Original beam waist width (m)
W(0) Cross-spectral density function of the individual beam
xd Distance (m)
z Propagation distance (m)

Greek symbols
θsp Angular spread (Rad)
λ Wavelength (nm)
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ξ Zenith angle (Rad)
ρ0 Spatial coherence radius of a spherical wave
σ0 Original correlation length (m)
ω Frequency (Hz)
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