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Adaptive optics (AO) systems have been used in many applications 
such as ground-based astronomical telescopes for improving the resolu-
tion by counteracting the effects of atmospheric turbulence; however, 
the traditional AO system model is not good at dealing with noise inter-
ference in the closed-loop correction. This paper proposes a subspace 
system identification method based on errors-in-variables (EIV) to 
build an accurate dynamic model of AO system from measurement data 
with closed-loop system identification. Experimental simulation results 
show that the root mean squares (RMS) of the residual wavefront is 
obviously smaller than that of the traditional method, whether back-
ground light noise and camera readout noise exist or not. We can con-
clude that the identified model has good accuracy and noise disturbance 
compensation ability to deal with dynamic wavefront correction com-
pared with traditional method. 

Keywords: Adaptive optics (AO), dynamic model, errors-in-variables (EIV), 
subspace system identification

1 INTRODUCTION AND BACKGROUND THEORY

Adaptive optics (AO) systems are widely used in several scientific and 
medical applications, such as astronomy, laser systems and microscopes, to 
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improve the resolution of the image by actively sensing and compensating the 
optical aberration [1-2]. An AO system aims at reducing the wavefront distor-
tions by controlling a deformable mirror (DM) that compensates for the 
effects of the atmospheric turbulence. 

The working principle of AO system is shown in Figure. 1. The deformed 
wavefront arrives at the wavefront sensor (WFS), which measures the phase dis-
tortions. Then, the real-time controller computes the input signal applied to the 
DM for wavefront compensation. An accuracy AO system model plays an impor-
tant role in closed-loop correction. At present, the model of AO system can be 
divided into two kinds. The first is the simplified model which usually considers 
the AO system as a pure delay link [3-5]. The second is the traditional model 
based on the influence matrix of the DM of which the parameters is tuned to make 
a trade-off among disturbance rejection, noise amplification, and closed-loop sta-
bility [6-7]. The simplified model does not represent the influences of the linear 
system link, and the parameters of traditional model are more complex in closed-
loop correction. Both the simplified model and the traditional method based on 
the influence matrix of the DM are difficult to be implemented by the modern 
control algorithm which need the accurate model base.

In order to solve the above problems, the technology of subspace system 
identification is widely used in AO systems to build accurate dynamical mod-
els [8]. Looze [9] and Looze et al. [10] were the first to build a dynamic 
mathematical model of the AO system by use of the mathematical method 
and evaluate the performance of the closed-loop system by simulations 
[9-10]. Chiuso et al. [11, 12] and Song et al. [13] apply a closed-loop sub-
space identification approach for the AO system based on the measurement 
data. These methods can build accuracy AO system models. These examples 
all assume that input and output have no noise interference, which, however, 
is not the case in practice.

FIGURE 1
Schematic diagram showing the AO system.
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The problem of identifying a model from noisy input-output observations is 
known as the errors-in-variables (EIV) problem [14-16]. Since the AO system 
is a multi-input and multi-output system, and its dynamic model has delay link 
and linear link, the method of subspace identification is fairly suitable to obtain 
an accuracy dynamic model of the AO system. Because of the unique advan-
tages, subspace identification has attracted a lot of attentions in the last two 
decades [17-18]. Subspace identification algorithm is generally divided into 
four categories: the canonical variate algorithm (CVA) [19], the numerical 
algorithms for subspace state space system identification (N4SID) [20], the 
multivariable output-error state space (MOESP) [21], and the instrumental 
variable-subspace state space system identification (IV-4SID) [22]. All of these 
methods estimate the range space of the observability matrix, and then obtain 
the matrix of the state-space form by either estimating the observability matrix 
or estimating the state sequence. Although these methods are easy to imple-
ment, these methods, in principle, are only applicable in open-loop identifica-
tion and cannot build an accuracy dynamic model of the AO system. 

This paper proposes the method of a MOESP-variant subspace identifica-
tion based on the EIV closed-loop identification to identify an accuracy 
dynamic AO system model from measurement data, so as to solve the closed-
loop identification problem of identifying an accuracy dynamic model of the 
AO system from noisy input-output observations. It will give a model foun-
dation for the design of AO system controller.

2 ERRORS-IN-VARIABLES (EIV) SUBSPACE IDENTIFICATION

2.1 Problem statement 
The AO system has been described in Figure 2. It is composed of one WFS, 
one DM and one controller unit. The symbols in Figure 2 have the following 
meanings: signal μk is the control input (the voltages applied to the DM); yk is 
the control output (the residual wavefront phase); and wk and vk are the mea-
surement noises which have been added for identification. The input and out-
put data are corrupted by additional noise. The scenario under consideration 
is depicted in Figure 3, where the identified AO system is modelled by the 
following linear time-invariant (LTI) state space model of finite order:

 x Ax Buk k k+ = +1   (1a)

and

  y Cx Duk k k= +  (1b)

where A, B, C and D is the state space realization of the AO system, and xk is 
the state sequence of the AO system.
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The observations available for identification are the measured input μk and 
the measured output yk. They are related to yk and uk, as follows:

 u u wk k k= +  (2a)

and

 y y vk k k= +  (2b)

where wk and vk represent noise disturb of the AO system. In this paper they 
are white noise.

So, the EIV identification problem of the AO systems: given the corrupted 
input and output measurements {μk} and {yk} of the unknown AO system. 
Determine, using the ergodic-algebraic framework thus: (i) an estimate of the 
AO system order n; and (ii) a consistent estimate of the quadruple of system 
matrices (A, B, C, D) up to a similarity transformation; this equivalent qua-
druple is denoted by (AT, BT, CT, DT).

2.2 Subspace identification
The problem described in the previous section will be solved in the frame-
work of subspace identification methods. The algorithm of this paper is based 
on a family of algorithms known as MOESP [23-25]. The marked character-

FIGURE 2
The signal block diagram of the AO system.

FIGURE 3
Block schematic diagram of the general EIV identification problem.
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istic of the MOESP family of algorithms is that the state space model is esti-
mated in two steps. The first step, the extended observability matrix Γs of the 
system is estimated. According to the matrix Γs, we can estimate the order of 
the system and compute the value of A and C. The second step, the matrices 
of B and D can be obtained based on estimated A and C employing the method 
of the linear least-squares.

For the subspace identification algorithm, the data of input and output are 
stored in a structured block Hankel matrix:
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where the first subscript of Uj,s,N indicates the time index of the top left-hand 
side element of the matrix, whereas the subscripts s and N indicate, respec-
tively, the number of the block rows and columns. In the same way, the output 
sequence {yk} and the noise sequences {wk, vk} are the same as Uj,s,N. These 
block Hankel matrices will, respectively, be denoted by Yj,s,N, Wj,s,N and Vj,s,N. 
According to Equations (1a), (1b), (2a) and (2b), these Hankel matrices can 
be shown by

 Y X H U H W Vj s N s j N s j s N s j s N j s N, , , , , , , , ,= + − +Γ  (4)

where Hs is block Toeplitz matrix. These matrices are 
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As mentioned before, once an estimation of Γs is obtained, the matrix pair (A, 
C) will be estimated. 

Now, according to subspace identification PI-MOESP algorithm, we can 
obtain
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then, according to the theory of the subspace identification, we make use of 
RQ factorization to have

 Y U R Qs s N U s N
N N

s s N+ +
=1 1 32 21, , , ,/

, ,
 (7)

The left hand side of the Equation (7) indicates that the row space of 
Ys+1,s,N along the row space of Us+1,s,N projects on the row of space of U1,s,N. 
Then, according to singular value decomposition (SVD) factorization, we can 
obtain

 R U SN
n n32 =  (8)

where Un can also be denoted by
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and so the matrix CT equals the first l (l is the number of output) rows of Un, 
that is CT= Un(1:l,:). The matrix AT is computed by 

 U s l A U l sln T n( : ( ) ,:) ( : ,:)1 1 1− = +  (10)
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Now, the matrix pair (A, C) has been estimated. Then, we will compute the 
matrix pair (B, D). Given the matrix AT and CT, the output yk of the state space 
model given in Equation (1b) can be written as
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k

T

k T

T T
k

T k

T

l

  

= ( ) + ⊗








 ( ) + ⊗



=

−
− −∑0

0

1
1

τ
τ

τ 



 ( )vec D  (11)

let AT and CT denote the estimates of the A and C computed in the previous 
step. Now, taking
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and
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we can solve for θ in a least-squares setting:
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and, therefore, BT and DT can be estimated.
Now, we can obtain the AO system interaction matrix (DC gain of the 

identified AO system model) according to (AT, BT, CT, DT):

 R C I A B Did T T T T= − +−( ) 1  (15)

3 ADAPTIVE OPTICS (AO) SYSTEM IDENTIFICATION

The goal of this paper is to identify an accurate AO system model using off-
line closed-loop subspace identification. We address the identification of a 
dynamic model linking the control action from the control input u(k) to the 
control output y(k) for the AO system, in Figure. 2.
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The DM has 61 actuators and the WFS has 64 sub-apertures. Each sub-
aperture has two directions of slop measurements: x axis direction and y 
axis direction. Because the AO system is a kind of MIMO system with 61 
inputs and 128 outputs (input m=61 and output l=128), we use a method 
of subspace approach. As far as memory requirements are concerned, this 
ideally allows to perform identification with an arbitrarily large number 
of data points; increasing the number of data is just a matter of computa-
tion time. The identification data of this paper is obtained from AO system 
closed correction based on traditional method in experiment. The data 
point N of this paper used in experiment is roughly 15000. The noise wk 

and vk can be represented with zero-mean white Gaussian noise in Figure. 
3. Due to closed-loop identification, the controller in the control loop is a 
simple PI controller. The transfer from the DM surface input u(k) to the 
residual wavefront phase output y(k) can be considered linear and a linear 
dynamic model can be identified for the controller design. In general, the 
AO system model can be represented in discrete state space form, for 
example as equation (1).

According to the section 2, the AO system model is identified in three 
steps: (i) a observability matrix Γs can be estimated from the input and output 
Hankel matrices by RQ factorization; (ii) the estimated matrix pair (AT, CT) 
of the matrix pair (A, C) and the order of the AO system can be computed 
based on the matrix Γs; and (iii) the estimated matrix pair (BT, DT) of the 
matrix pair (B, D) can be obtained based on the estimated matrix pair (AT, CT) 
employing the least-squares method.

The accuracy of the identified AO system model is evaluated by calculat-
ing the variance accounted for (VAF) of the model, which is defined as

 VAF = −
−





×1 100
var( ( ) ( ))

var( ( ))
%

y k y k

y k
real id

real

 (16)

where, yreal(k) is the real output of the AO system model and yid(k) is the out-
put of the identified AO system model. If the accuracy of the identified model 
is higher, the VAF should be closed to 100%. We can obtain the following 
Figure. 4 according to Equation (16), it shows that the accuracy of identified 
AO systems model is very high.

4 RESULTS AND DISCUSSION

The WFS is S-H WFS based on the geometric diffraction and the DM is 
based on influence function in this paper. If input signal Vj is the control volt-
age added to the jth actuator of the DM, the average gradient in the sub-
apertures of the WFS is 



 ConstruCtion of a dYnamiC adaPtive oPtiCs (ao) sYstem Based 323

 

G i V

R x y

x
dxdy

S
V R i

G i V

x j
j

t

j

S

i
j

j

t

xj

y j
j

i( )

( , )

( )

( )

=

∂
∂

=

=

= =

=

∑
∫∫

∑
1 1

1

tt

j

S

i
j

j

t

yj

R x y

y
dxdy

S
V R i

i

i∑
∫∫

∑

∂
∂

=

















=

=

( , )

( )

, , , ,.

1

1 2 3 ...m  (17)

where Ri(x,y) is the jth actuator influence function of the DM; t is the number 
of the actuators; m is the number of the sub-apertures of the WFS; and Si is 
the ith sub-aperture normalization area. According to the linear relationship 
between sub-apertures gradient G of the WFS and actuators voltage V of the 
DM, the equation (17) can be written as

 G R V= *  (18)

where R is the influence matrix from the WFS to the DM, which can be cal-
culated based on the Fourier transformation theoretically or based on the 
WFS experimentally. According to Equation (18), we can then obtain

 V R G= † *  (19)

FIGURE 4
The VAF of the identified AO system model.
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where V the control voltage of the DM which is corresponding to the current 
wavefront; and R† is the transfer matrix which is the pseudo inverse of matrix 
R. This is the so called traditional method.

Then, we validate the identified AO system model in the closed-loop cor-
rection through a series of simulations. In the closed-loop correction, we first 
use the identified model and traditional model to calculate the control voltage 
signal V according to Equation (15) and Equation (19), which is correspond-
ing to the current residual wavefront, respectively. Next, we make use of the 
following same PI controller (pi_a=0.998, pi_b=0.8) to obtain the final con-
trol voltage signal Vend applied to the DM, respectively:

 V pi a V k pi b Vend = − +_ * ( ) _ *1  (20)

In order to compare the accuracy and reliability of identified model, a set 
of dynamic atmospheric turbulence phase screen (ATPS) (which is exactly 
different from the identification data.) is used as external interference input 
wavefront according to Kolmogorov atmospheric turbulence when the wind 
speed is 5 m/s, seeing Figure. 5. The parameters of atmospheric turbulence is 
D/r0=7, and the sampling rate of the WFS camera is 1000 Hz. Next, we 
respectively use identified model and traditional model to correct the same set 
of ATPS whether with the background light noise and camera readout noise 
or without noise.

In the absence of noise interference, the correction results of different 
model and the residual wavefront after correction are shown in Figure. 6, 
and the root mean squares (RMS) of the two models are all most the same 
in Figure. 7. We can conclude that the identified model has high accuracy 

FIGURE 5
(a) The two-dimensional (2-D) image of the incident ATPS and (b) the RMS of the incident 
ATPS.



 ConstruCtion of a dYnamiC adaPtive oPtiCs (ao) sYstem Based 325

and good correction ability for dynamic ATPS from Figure 6. Form Figure 
7, the RMS of the residual wavefront based on identified model is 0.08 μm, 
while that of traditional model is 0.1 μm. The correction result of the identi-
fied model is a little better than that of the traditional model.

When the S-H WFS detects the wavefront, the camera generates the 
background light noise and camera readout noise [26]; therefore, in the 
actual AO system, in addition to the influence of external interference, there 
is also internal noise interference such as the background light noise and 
camera readout noise. In order to verify the compensation ability of the 
identified model, we take the background light noise and camera readout 

FIGURE 6
Residual wavefront images when (a) corrected by the traditional model, RMS=0.10 μm and (b) 
corrected by the identified model, RMS=0.08 μm.

FIGURE 7
The RMS value of the residual wavefront after being corrected by the DM.



326 H-Q. Lin et al.

noise as examples to analyse and compare the performance of the identified 
AO system model in which the background light noise obey the Poisson 
distribution with a mean value of 1 and the camera readout noise is zero-
mean Gaussian distribution with a variance of 0.1. Next, we have to verify 
our identified AO model in the presence of both. The incident ATPS is 
shown in Figure. 5.

The different model correction results and the far field after correction in 
presence of both noises are shown in Figure. 8. The RMS of two kinds of 
model in presence of both noises are described in Figure. 9. We can con-
clude that the RMS and correction effect of the identified model are obvi-
ously better than that of that of the traditional method from Figure 8 and 
Figure 9. It can be explained that the identified model not only has good 
correction effect but also has a strong ability to suppress noise interference 
in the presence of background light noise and camera readout noise from 
Figure 8 and Figure 9. 

Figure. 9 shows that the correction effect of the identified AO system 
model is much better than that of the traditional model under noise condi-
tions. As can be seen from Figure. 9, although the RMS value of the identified 
model is a bit large in several places, it is generally better than that of the 
traditional model in presence of the background light noise and camera read-
out noise. Comparing with free noise in Figure. 7, although the RMS value of 
the identified model is improved a little, it is still less than 0.1 um, while that 
of the traditional model is obviously poor. In a word, the RMS of the identi-
fied AO system model is much better than that of the traditional method, 
whether with the background light noise and camera readout noise or without 
noise in Table. 1.

5 CONCLUSIONS

We propose a method of closed-loop subspace system identification based on 
errors-in-variables (EIV) model to build an accurate dynamic model of adap-
tive optics (AO) system. Through a series of simulations, we obtain that the 
identified AO system model is very accurate and has a strong compensation 
ability and robustness. The root mean square (RMS) of residual wavefront 
after correction is obviously smaller than that of the traditional method.

Further work will include exploring the possibility of using such models 
for the purpose of controller design.
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FIGURE 8
Images of the residual wavefront (a) after being corrected by the traditional model, RMS=0.20 
μm and (b) after being corrected by the identified model, RMS=0.09 μm.

FIGURE 9
The RMS value of the residual wavefront after being corrected through 300 iterations in the pres-
ence of camera readout noise and background light noise.

TABLE 1
Noise values.

RMS (Initial ATPS is 0.36 μm) Free of Noise (μm)
Background Light Noise and 
Camera Readout Noise (μm)

The traditional model 0.10 0.20

The identified model 0.08 0.09
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