Estimation of Laser Shock Peening Induced Plastic Deformation in Hastelloy-X Superalloys

S. Nath*, P. Shukla1, X. Shen1, A. Behera2 and J. Lawrence1

1School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry, CV1 2JH, UK
2Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela, 769008, India

The goals of the present study are to strengthen a new, Hastelloy-X superalloys by prestressing the surface with laser-plasma driven shock waves and also to quantify the effect of Laser Shock Peening (LSP) on the evolution of phase, residual stress (both through thickness and on the surface), dislocation density, and hardness of Hastelloy-X superalloys. Dislocation densities in the peened and unpeened samples were measured by Wiliamson and Smallman approach to analyze the severity of plastic deformation following LSP surface treatment. The maximum compressive residual stress measured on the peened surface of Hastelloy-X samples using incremental hole drilling technique was 850 MPa. In addition, it was found that the LSP parameters have a dominant effect in tailoring the surface hardening behavior and residual stress in Hastelloy-X superalloys.

Keywords: Laser shock peening, residual stress, incremental hole drilling, dislocation density, strain hardening

1 INTRODUCTION

Hastelloy-X is a solid solution-strengthened nickel-based superalloy with excellent oxidation resistance, formability, and high-temperature strength [1-3]. Hastelloy-X superalloys are extensively used in gas turbine engines for combustion-zone components, tail pipes, and are being considered as potential material for high-temperature gas-cooled reactor (HTGR) [4]. However, failure in these materials was reported due to intergranular attack and internal

Corresponding author’s e-mail: sendsubha@gmail.com
oxidation in high-temperature gas mixtures [3, 5]. The thermal stress induced cracks are responsible for the generation of intergranular attacks and occurrence of internal oxidation in Hastelloy-X superalloys.

Laser shock peening (LSP) is a surface severe plastic deformation process which involves plastic deformation of the material by high pressure shock waves resulting from interaction of energetic laser with a material [6, 7]. The generated shock waves not only deform the material in contact plastically, but also induce compressive residual stress on the surface of the material [7-10]. The generation of compressive residual stress helps to delay the crack growth/propagation, thereby increasing the fatigue strength of the material [11, 12].

The use of LSP process has also been extended to strain harden materials’ surface which increases the hardness, toughness and tribological properties of the metallic and ceramic systems [10, 13, 14].

LSP of many advanced materials have been investigated which include aluminum alloys [15-19], nickel alloys [20-29], titanium alloys [30-35], iron alloys [36-40], magnesium alloys [41, 42], copper alloys [43] etc. Interestingly, LSP studies have not been limited to only metallic systems, it has also been studied on non-metallic systems [13, 14]. The LSP of these conventional and advanced materials have shown to improve not only the surface hardening and fatigue strength, but also significantly contributed to the improvement of corrosion and wear resistance properties [30, 44]. Grain size reduction and surface nano-crystallizations have also been observed following LSP [19, 42]. The work carried out by Tradan et al [19] showed an increase in the dislocation density following LSP which was responsible for the evolution of ultra-fine grains in the near surface microstructure.

Studies on LSP of Ni-based superalloys were mostly reported on the mechanical properties and residual stress development. Gill et al [26] compared the effect of advanced mechanical surface treatments (laser shock peening, cavitation shotless peening and ultrasonic nanostructure modification) on IN718 SPF and investigated the process effect on residual stress development, surface hardening, microstructural evolution etc. The measured residual stress and hardness were lowest amongst all the three surface treatment processes with no signature of nano-crystallization [26]. Wang et al [20], however, reported grain refinement following LSP of K403 Ni alloy. The studies on LSP of Ni-based superalloys depict only on qualitative dislocation density without providing the much needed quantitative information.

The aim of the present investigation is to study the effect of LSP on the properties of Hastelloy-X superalloys and to understand the strengthening mechanisms. The study is mainly focused on studying the phase distribution/evolution, microstrain development, surface hardening behavior, and evolution of dislocation density and residual stress following LSP. Microstrain and dislocation density have been measured and critically discussed to understand the strain hardening behavior in Hastelloy-X superalloys following LSP. In-depth residual stress measurement has been carried out using incre-
mental hole drilling technique to quantify the depth of residual stress in the material following LSP surface treatment.

2 MATERIALS AND METHODS

2.1 Materials

LSP was carried out on rectangular Hastelloy-X superalloy samples (30 mm \(\times \) 10 mm \(\times \) 10 mm dimension), whose composition and mechanical properties are mentioned in Table 1. Prior to LSP, these superalloy samples were stress relieved at 1175 °C for an hour followed by grinding in 600 µm grit size SiC papers to remove the surface residues and oxides. Ultrasonic cleaning was carried out in acetone and isopropyl alcohol baths to remove any contaminants present on the surface followed by blower drying.

2.2 Laser shock peening

In the present study, a 10 J pulsed Nd:YAG laser system (LPY10J; Litron) was used for the laser shock peening (LSP) study. The schematic of the LSP set up is shown in Fig.1. The LSP studies were carried out with a radiation wavelength of 1064 nm and a pulse duration of 8 ns long at a repetition rate of 10 Hz. The raw beam diameter was 25 mm which was then focused down to 3 - 7.5 mm on the sample’s surface using a fused silica lens (focal length = 50 mm). The laser beam divergence was 0.5 mrad (\(M^2 \approx 1.99 \)). The laser beam radiance density were measured to be between 6.44 to 22.65 J.cm\(^2\).Sr\(^{-1}\).µm \([46–49]\). Black polyisobutylene tape with a thickness of 500 mm was used as an absorptive layer to prevent any thermal effect on the sample during LSP process. Water with a flow rate of 2 L/min was used as a confinement medium in the present study. All the samples were treated with single shot laser pulse with an overlap of 50%. The process map adopted in the present study are presented in Figure. 2. Four different systems were developed based on the laser energy and beam diameter combinations. This led to four different laser power densities used in the present study.

LSP involves irradiating the surface of the target using a high energy laser which then forms an expanding plasma, following laser-material interaction, with high pressure shock waves propagating into the material. The material is

<table>
<thead>
<tr>
<th>Composition (wt.%)</th>
<th>Young’s modulus (GPa)</th>
<th>Yield strength (MPa)</th>
<th>Dynamic yield strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>Cr</td>
<td>Fe</td>
<td>C</td>
</tr>
</tbody>
</table>
considered to deform plastically when the shock wave pressure exceeds the Hugoniot Elastic Limit (HEL) of the material.

According to Fabbro et al [50] and Peyre et al [7, 8], the peak plasma pressure, P, can be expressed as

$$P(GP\alpha) = 0.01 \sqrt{\frac{\alpha}{2\alpha + 3}} \sqrt{Z \left(\frac{8}{cm^2s^2} \right)} \sqrt{I_0 \left(\frac{GW}{cm^2} \right)}$$

where, $I_0 = \frac{P_{avg}}{f \times \tau \times A}$ is the laser power density and P_{avg}, f, τ, A, Z, and α are the average power (W), pulse repetition rate (Hz), pulse duration (ns), laser spot area (cm2), reduced shock impedance between the material and the confining medium, and efficiency of plasma-material interaction (0.1 – 0.2) [8], respectively. The importance of α during laser-material interaction is that it contributes to the total energy (E_t) by converting part of energy (αE) to thermal energy and rest of the energy (($1 - \alpha)E$) is used to generate and ionize plasma. The increased in thermal energy increases the pressure of the plasma.

The reduced shock impedance is expressed as [8]

$$\frac{2}{\varepsilon} = \frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2}$$

FIGURE 1
Schematic representation of laser shock peening (LSP) process.
where, Z_1 and Z_2 are the shock impedances of target material and confining medium, respectively. In the present study, Z_1 (nickel) = 4.14×10^6 gcm$^{-2}$s$^{-1}$ and Z_2 (water) = 0.165×10^6 g.cm$^{-2}$.s$^{-1}$ [20].

The reduced shock impedance according to Equation. (2) is measured to be 0.32×10^6 g.cm$^{-2}$.s$^{-1}$. The value of peak pressure developed on the sample’s surface following LSP was calculated according to Equation. (1) is shown in Figure. 2. The HEL of any material is related to its dynamic yield strength (σ_{Ydyn}) as [6, 45]

$$HEL = \frac{1 - \vartheta}{1 - 2\vartheta} \sigma_{Ydyn}^{dyn}$$ (3)

where, ϑ is the Poisson’s ratio of the material. The value of σ_{Ydyn}^{dyn} was taken from ref. [45] for the calculation of HEL. The calculated value of HEL was measured using Equation. (3) and is shown in Figure. 2.

The laser shock peening parameters were chosen to ensure that the peak plasma pressure exceeds the HEL of the material to plastically deform the material.

2.3 Material characterization

2.3.1 Phase analysis

X-ray diffraction (XRD) (D8 Discover; Bruker Corporation) was used to study the phase evolution following LSP using a Cu Kα radiation with a scan step of of 0.02°/s and time per step of 0.1 s. For the measurement of full width at half maximum (FWHM) of the diffraction peaks, scanning speed of 0.01°/s and time per step of 5 s were employed to ensure higher peak counts. Each peak was then fitted using Pseudo-Voight function with Origin8.5 software platform.
The Williamson-Hall method for Uniform Stress Deformation Model (USDM) considering the anisotropic nature of the strain was used for the determination of microstrain developed in the crystal lattice following LSP. The equation used to calculate the microstrain is presented below [51, 52].

\[\beta_{hkl} \cos \theta_{hkl} = \frac{k\lambda}{D} + 4 \left(\frac{\sigma}{E_{hkl}} \right) \sin \theta_{hkl} \]

(4)

where, \(\beta \) is the full width half maximum (FWHM), \(\theta \) is the diffraction angle, \(K \approx 1 \) is a constant, \(\lambda \) is the X-ray wavelength, and \(D \) is the crystallite size (or domain size). The suffix, \(hkl \), refers to a crystallographic plane.

From the slope and intercept of the plot between \(\beta_{hkl} \cos \theta \) and \(4 \sin \theta/E_{hkl} \), the lattice deformation stress, \(\sigma \), and the crystallite size, \(D \), were measured, respectively.

The microstrain (\(\varepsilon \)) can be re-written as \(\varepsilon_{hkl} = \frac{\sigma}{E_{hkl}} \), where \(E_{hkl} \) is the Young’s modulus in a crystallographic direction perpendicular to the lattice plane (hkl).

2.3.2 Microstructural analysis

Optical microscopy of the LSP treated surface was carried out using a light optical microscope (Axio Observer; ZIESS) to measure the grain size. The grain size was measured using linear intercept method according to ASTM E112 – 13. Microstructural analysis of the LSP treated surface was carried out using scanning electron microscope (SEM) (Gemini SEM; ZIESS). The samples were chemical etched prior to microstructural study. The etchant used to etch Hastelloy-X samples was Waterless Kalings reagent. The etching time was optimized to be 30 seconds for Hastelloy-X samples.

2.3.3 Dislocation density measurement

Williamson and Smallman method [53] was used to measure dislocation density in untreated and LSP treated samples. The method assumes the crystallite size and microstrain are related to dislocation density as:

\[\rho = \frac{2\sqrt{3} \langle \varepsilon^2 \rangle^{1/2}}{Db} \]

(5)

where, \(\langle \varepsilon^2 \rangle^{1/2} \) is the root mean square (rms) microstrain, \(D \) is the size of coherently diffracting domains, and \(b \) is the burger vector in \(<110> \) direction and for an FCC crystal it is expressed as \(b= <110> a/2 \), where \(a \) is the lattice
2.3.4 Residual stress measurement using incremental hole drilling technique
The incremental hole drilling technique was used to measure residual stress along the depth of the sample. The measurement was carried out using a hole drilling apparatus (Restan-MTS3000; SINT Technologies) which consists of both the mechanical and electronic drills. For this study here, the electrical drill was employed. The obtained data was then evaluated by a control software (RMS) and back calculation software (EVAL). The drilling device was mounted using magnetic feet on a 12 mm thick mild steel plate. The identification of the surface of the sample (reference point for drilling) was controlled by the electrical contact between the endmill and the metallic sample. The end mill diameter was 1.5 mm. The drilling speed was kept at 0.1 mm/min. The acquisition delay and the drilling delay were kept at 4s and 3s, respectively. The residual stresses were calculated by the HDM method using the constant spline function with eccentricity correction between the drilled hole and the center of the strain gage rosette.

2.3.5 Microhardness Measurement
Vickers microhardness tester (DURASCAN-70; Struers) was used to measure the hardness of untreated and LSP treated samples using 100 gf load and a dwelling time of 10 seconds.

3. RESULTS

3.1 Microstructural characterisation
Figure. 3 shows the optical micrographs of (a) LSP-1, (b) LSP-2, (c) LSP-3, (d) LSP-4, and (e) unpeened sample. Surface microstructure modification is evident from the cross-section of optical micrographs following LSP. The depth of microstructural modification varies between 40 to 90 mm as shown by the dotted lines. Higher depth of microstructural modification can be observed for sample treated with a peak power density of 14.1 GW/cm² (LSP-4). The grain sizes were measured on three different samples using linear intercept method (ASTM E112 – 13) and the lowest grain size of 23 mm (± 1.5 mm) was measured for LSP-4 (14.1 GW/cm²). The measured grain size for LSP-1 (1.12 GW/cm²), LSP-2 (2.95 GW/cm²), and LSP-3 (7.96 GW/cm²) were 30 mm (± 2.8 mm), 28 mm (± 2.3 mm), and 25 mm (± 1.8 mm), respectively. The measured grain size in an unpeened sample was 57 mm (± 5.2 mm).
Figure. 4 shows the scanning electron micrograph of the cross-section of (a) LSP-1, (b) LSP-2, (c) LSP-3, (d) LSP-4, and (e) unpeened sample. From Figure. 4 (a-d), the deformation induced grain size reduction is evident. Hastelloy-X is a solid solution strengthened Ni-Fe superalloy. Presence several annealing twins in the austenitic matrix is evident in the microstructure of the Hastelloy-X superalloys which formed due to solution annealing treatment of samples to relieve any trapped stress before LSP.

High magnification scanning electron micrographs of an unpeened sample (Figure. 5a) and LSP-4 (Figure. 5b) are shown in Figure. 5. The high magnification micrographs don’t show any sign of significant microstructural refinement with only presence of sub-grains (as shown by arrows) in a grain...
as shown in Figure 5b with the dotted line. No evidence of surface melting is also observed in Figure 5b which confirms the process was purely mechanical without any thermal effect.

3.2 Phase analysis

Figure 6 shows the XRD phase scans of an untreated Hastelloy-X superalloy (plot 1), LSP-1 (plot 2), LSP-2 (plot 3), LSP-3 (plot 3), and LSP-4 (plot 5). The XRD phase scans reveal presence of face centered cubic (FCC) reflections of nickel (Ni) matrix in both untreated and laser shock peened samples. There is no trace of reflections from any other phase suggesting that there was no separate phase formation (oxides) or phase transformation due to high pressure shock waves during LSP which corroborates microstructural studies indicating absence of melting (no thermal effect). The lattice parameter in the unpeened and LSP treated Hastelloy-X samples were measured to be 0.355
nm which was used to calculate burger vector in the $<110>$ direction and hence, the dislocation density.

The crystallite size (D) and rms microstrain (ϵ_{rms}) in laser shock peened samples were estimated from the XRD peak broadening using Uniform Stress Deformation Model (USDM) and the estimated values are plotted in Figure 7. It should be noted here that, D is the size of the homogeneous domains contributing to coherent diffraction under XRD, and is less than the grain
FIGURE 6
X-ray diffraction scans of an untreated hastelloy x superalloy (plot 1), LSP-1 (plot 2), LSP-2 (plot 3), LSP-3 (plot 3), and LSP-4 (plot 5).

FIGURE 7
Variation of crystallite size and microstrain with laser power density.
size, which was estimated by optical microscopy and scanning electron microscopy. On the other hand, dislocations are considered to be the line defects which are responsible for the peak shift, broadening and asymmetry in the XRD pattern. The measurement and analysis of dislocation density and peak broadening are discussed in the following sections. The crystallite size of an untreated Hastelloy-X superalloy was measured to be 56 nm. It is interesting to note that with the application of LSP surface treatment the crystallite size increases which is evident from Figure. 7. The crystallite sizes of LSP-1, LSP-2, LSP-3, and LSP-4 were measured to be 76 nm, 75 nm, 72 nm, and 66 nm, respectively. From Figure. 7, it can be observed that the crystallite size decreases with increase in the laser power density which implies that higher the plastic deformation, the lower is the crystallite size. The root mean square (rms) microstrains were measured using the microstrains observed in different crystallographic directions. Figure. 7 shows the rms microstrain developed on the laser shock peened samples. The microstrain measured in the Hastelloy-X samples were also found to be dependent on the laser power density. With the increase in the laser power density, the microstrain developed on the surface of the sample increases as shown in Figure. 7.

Figure. 8 shows the variation of dislocation density with laser power density. Measuring dislocation density in laser shock peened samples is an effective way to quantify plastic deformation. High strain rate surface plastic deformation of the metallic systems were reported to increase the dislocation

FIGURE 8
Variation of dislocation density with laser power density.
density which resulted in surface hardening as well as formation of nano-structured zone on the surface [24, 54]. From Figure. 8, it may be noted that the dislocation density in an untreated sample is 6.3×10^{13} m$^{-2}$ which increases to a maximum value of 26.3×10^{13} m$^{-2}$ for LSP-4. The dislocation density in LSP-1, LSP-2, and LSP-3 were measured to be 18.7×10^{13} m$^{-2}$, 19.7×10^{13} m$^{-2}$, and 25×10^{13} m$^{-2}$, respectively.

3.3 Incremental hole drilling

LSP is a process where plastic loading and unloading takes place which leads to the development of compressive residual stress in the material. Residual stress distributions in the untreated and LSP treated samples as a function of depth are shown in Figure. 9 (a-e). Stresses were measured in two directions perpendicular to each other. The initial stress on the untreated sample’s surface is tensile in nature ($S_{\text{max}} = 23$ MPa and $S_{\text{min}} = 9$ MPa) as shown in Figure. 9 (a). From Figure. 9 (b-e), it can be observed that the LSP treated samples shows development of compressive residual stress following LSP and the maximum compressive residual stress was measured just below the surface. The compressive nature of the residual stress developed on the samples following LSP confirms the theoretical

FIGURE 9
Incremental hole drilling residual stress measurement of (a) as-received Hastelloy-X sample, (b) LSP-1, (c) LSP-2, (d) LSP-3, and (e) LSP-4.
data shown in Figure 2. It is to be noted that the depth of compressive residual stresses in LSP-1 to LSP-4 varies between 0.1 mm to 0.35 mm. The previous studies have shown the depth of compressive stress is extended up to 1 mm [24, 54, 55]. The difference in depth of compressively stressed zone in the present study and previous studies may be attributed to the use single shot laser pulse instead of multiple shots [55]. This is because of the work hardening of the material due to dislocations generation in first shot which then decreases the rate of attenuation of the subsequent pressure pulse followed by a higher peak pressure to deform deeper into the material on successive shots. The compressive residual stress components S_{max} and S_{min} for LSP-1 were measured to be 140 MPa and 50 MPa, respectively as shown in Figure 9 (b). Residual compressive stress components for LSP-2 were 481 MPa (S_{max}) and 280 MPa (S_{min}) as shown in Figure 9 (c). Maximum compressive residual stresses of 697 MPa (S_{max}) and 834 MPa (S_{min}) were measured at 39 mm below the surface for LSP-3 as shown in Figure 9 (d). On the other hand, the compressive residual stresses measured for LSP-4 were 637 MPa (S_{max}) and 73 MPa (S_{min}).

4 DISCUSSION

LSP is a high strain rate deformation process which results in producing nanostructured zones in the surface microstructure. Table 2 compares the results obtained in the present study and reported works on LSP of Ni-based superalloys. These will be discussed in the following section. It is important to mention here that no other studies on LSP of Ni-based alloys have used incremental hole drilling technique to measure the residual stress through depth.

Following grain size measurements using Figure. 3 (a-d), a maximum reduction in grain size of 60% with a laser power density of 14.1 GW/cm2 was observed. The increased shock wave pressure at higher laser power density is the reason behind the reduction in grain size. Hua et al [25] reported similar reduction in grain size following LSP. The reported value of grain size following LSP was 18.5 mm as compared to 33.3 mm in an untreated GH586 superalloy. The grain size reduction observed in the present study is not so significant as compared to several other studies where grain sizes were in the order of nanometer following LSP [24, 54]. However, reported studies were conducted with multiple laser shots during LSP which resulted in a grain size reduction whereas a single-shot strategy was used in the present study. Studies carried out by Trdan et al [19] and Kattoura et al [24] showed the grain size in the near surface regions were in the range of 20-50 nm following LSP Al-Mg-Si alloys and ATI 718Plus alloy, respectively. Interestingly, a laser power density of 4.7 GW/cm2 was shown to produce a nanostructured zone
<table>
<thead>
<tr>
<th>Ni-based alloy</th>
<th>Laser energy (J)</th>
<th>Laser intensity (GW/cm²)</th>
<th>Residual stress (MPa)</th>
<th>Hardness</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastelloy-X superalloy</td>
<td>Wavelength = 1064 nm; Pulse energy= 8 J; Pulse duration= 8 ns; Pulse repetition rate= 10 Hz; Spot diameter= 3-7.5 mm; Overlap= 50%</td>
<td>1.13 - 14.1</td>
<td>Untreated= 23 (Sₘₐₓ)ₑ and 9 (Sₘᵢₙ)ₑ; LSP= 697 (Sₘₐₓ)ₑ and 834 (Sₘᵢₙ)ₑ</td>
<td>Untreated= 208 HV0.₁⁸, LSP= 243 HV0.₁⁸ (1 shot)</td>
<td>Present study</td>
</tr>
<tr>
<td>K₄₀₃ nickel alloy</td>
<td>Wavelength = 1064 nm; Pulse energy= 5-25 J; Pulse duration= 20 ns; Pulse repetition rate= 1 Hz; Spot diameter= 2 mm; Overlap= 60%</td>
<td>12</td>
<td>LSP= -633 (1 shot)²; -826 (2 shot)²; -882 (3 shot)²</td>
<td>Untreated= 389 HV0.₃⁸, LSP= 453 HV0.₃⁸ (1 shot); 461 HV0.₃⁸ (2 shot); 475 HV0.₃⁸ (3 shot)</td>
<td>[20]</td>
</tr>
<tr>
<td>Inconel alloy 718</td>
<td>Wavelength = 1054 nm; Pulse energy= 1.5-3.9 J; Pulse duration= 20 ns; Spot diameter= 1.8 mm; Overlap= 50%</td>
<td>2.9 – 7.7</td>
<td>LSP= -550²</td>
<td></td>
<td>[21]</td>
</tr>
<tr>
<td>Material</td>
<td>Wavelength</td>
<td>Pulse energy</td>
<td>Pulse duration</td>
<td>Pulse repetition rate</td>
<td>Spot diameter</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Single crystal Ni-superalloy</td>
<td>1064 nm</td>
<td>6 J</td>
<td>14 ns</td>
<td>2 Hz</td>
<td>2 mm</td>
</tr>
<tr>
<td>Incoloy 800 superalloy</td>
<td>1064 nm</td>
<td>0.4 J</td>
<td>10 ns</td>
<td>10 Hz</td>
<td>3 - 6 mm</td>
</tr>
<tr>
<td>ATI 718 Plus superalloy</td>
<td>1064 nm</td>
<td>3 J</td>
<td>20 ns</td>
<td>10 Hz</td>
<td>2 mm</td>
</tr>
<tr>
<td>GH586 superalloy</td>
<td>1064 nm</td>
<td>15 J</td>
<td>30 ns</td>
<td>4 mm</td>
<td>50%</td>
</tr>
<tr>
<td>Inconel 718 SPF superalloy</td>
<td>1054 nm</td>
<td>8.23 and 15.24 J</td>
<td>28.6 and 25.3 ns</td>
<td>50%</td>
<td>2 and 2.18 mm</td>
</tr>
<tr>
<td>Astroloy superalloy</td>
<td>1064 nm</td>
<td>80 J</td>
<td>25 ns</td>
<td>1 Hz</td>
<td>8 mm</td>
</tr>
<tr>
<td>K417 superalloy</td>
<td>1064 nm</td>
<td>8 J</td>
<td>20 ns</td>
<td>3 mm</td>
<td>33%</td>
</tr>
<tr>
<td>K417 superalloy</td>
<td>1064 nm</td>
<td>10.8 J</td>
<td>20 ns</td>
<td>1 Hz</td>
<td>3.4 mm</td>
</tr>
</tbody>
</table>

*aVickers Hardness; bNano-hardness; cKnoop Hardness; dX-ray diffraction; eHole drilling
near the surface in Ni-based superalloys [24] whereas a laser power density of 14.1 GW/cm² in the present study didn’t result in the formation of nanometer sized grains in Hastelloy-X samples. No grain refinement in Inconel 718 SPF alloy was, however, observed by Gill et al [26] following LSP with a laser power density of 16 GW/cm². The reason of the observation may be related to single-shot LSP strategy. Nonetheless, with the use of single-shot LSP a significant decrease in grain size was observed which would help to fine tune the LSP process further for getting higher surface strength and improved surface properties. A transmission electron microscopy study will be done in future to measure the grain size in the near surface zone. Nonetheless, grain size reduction is evident, however, a nanostructured zone is not evident. Comparing Figure. 5a and Figure. 5b, it may also be noted that the surface of LSP-4 is wavier than the surface of the unpeened sample. The surface waviness is believed to be due to the laser shock wave induced deformation.

In LSP, the severity of plastic deformation increases with the increase in the peak pressure exerted on the sample. The peak plasma pressure can be controlled by exploiting the laser power density and the reduced shock impedance according to Equation. (1). Moreover, the peak plasma pressure can also be controlled by using different absorptive mediums and confining mediums [6, 56, 57]. In the present study, water was used as a confinement medium and black vinyl tape was used as an absorptive medium. However, laser power density was varied.

The increase in dislocation density in the LSP treated samples indicates an increase in the magnitude of plastic deformation which is necessary to obtain a hardened surface and to induce compressive residual stress on the surface of the superalloy. By looking at Equation. (1), it is clear that with the increase in laser power density, the peak plasma pressure on the surface increases. An increased peak plasma pressure then deforms the material by pure mechanical effect. In the present study, a 4-fold increase in the magnitude of dislocation density was observed following LSP with a laser power density of 14.1 GW/cm² as shown in Figure. 8. A 2.5 times increase in dislocation density (measured using Smith–Guttman linear intercept technique) was reported by Tradan et al [19] following LSP of aluminum alloy. It is to be noted that no reported dislocation density on Ni-based alloys following LSP was found to compare with the present study. The increase in the dislocation density is attributed to the peak plasma pressure of 13.98 GPa (cf. Figure. 2) which is much higher than the HEL of the material (≈ 1.11 GPa). Three-fold increase in the dislocation density was also observed when the sample was LSP treated with a laser power density of 1.13 GW/cm² as compared to the untreated sample. It is important to mention here that a laser power density of 1.13 GW/cm² induces a peak plasma pressure of 1.12 GPa on the surface of the sample as mentioned in Figure. 2. The minimum plasma pressure requires to induce plastic deformation in the
material is 1.11 GPa (\approx HEL). The small difference of ~5% in the measured dislocation density between LSP-1 and LSP-2 is due to the smaller change in the laser power density in LSP-2 than in LSP-1 as shown in Figure. 8. However, a considerable increase in dislocation density of almost 27% can be observed following an increase in the laser power density from 2.95 GW/cm2 to 7.96 GW/cm2 as evident from Figure. 8 which is attributed to increase in peak plasma pressure. Figure. 8 also depicts that the dislocation density in LSP-4 shows a change of only ~5% as compared to LSP-3. This is almost similar to the difference between LSP-1 and LSP-2. However, the difference in laser power density between LSP-3 and LSP-4 is more as compared to the difference between LSP-1 and LSP-2. It is believed that the confinement layer breakdown phenomenon may be the reason behind the small increase in the dislocation density [6]. Confinement layer breakdown phenomenon indicates that the confining dielectric medium (water in this case) is no more transparent to the incident laser radiation due to increase in plasma in the dielectric volume and the transmission of laser radiation through the confining medium to the interface is severely disrupted by the inverse Bremsstrahlung mechanism. This behavior is characterized by saturation in plasma pressure with increase in laser power density.

The generation of compressive stress is also dependent on the applied laser power density. That is why higher values of compressive stress were measured for LSP-3 and LSP-4 as compared to LSP-1 and LSP-2 samples. It should also be noted that reported results were also shown to have tensile residual stress which is due to surface melting during LSP [21]. The reported compressive residual stress values were between -227 MPa and – 882 MPa [20, 21, 23, 24, 26-29]. The reported compressive residual stresses using single-shot LSP were 633 MPa [20] and 583 MPa [29]. The variation in the reported values and the value measured in the present study is believed to be due to the different LSP conditions/parameters employed herein. Moreover, the LSP-4 sample showed lower stress value than LSP-3 which may be due to the confinement layer break down phenomena. The confinement layer breakdown phenomena is observed when the laser power density increases to a critical value (as happened for LSP-4) beyond which the peak plasma pressure is no longer a linear function of laser power density and a scattered compressive stress may be observed beyond this point [6]. The increased compressive residual stress in Hastelloy-X superalloys following LSP surface treatment may be beneficial in improving the fatigue strength of the superalloy under study which is in scope of future study. The improvement in microhardness is related to the strain hardening phenomena which is observed following LSP surface treatment.

Figure. 10 shows the microhardness distribution in the LSP treated samples LSP-1, LSP-2, LSP-3, and LSP-4. A maximum hardness of 243 HV0.1 was measured on the surface of LSP-4. The surface hardness of LSP-1, LSP-2, and LSP-3 were measured to be 212 HV$_{0.1}$, 223 HV$_{0.1}$, and 240 HV$_{0.1}$,
respectively as shown in Figure 10. From Figure 10, it is evident that the microhardness on the surface is higher than the interior with a gradual distribution of microhardness across its depth. From Figure 10, the LSP surface treatment shows improved surface hardening as compared to an untreated sample. A maximum increment in hardness of ~16.8% was measured following LSP. Wang et al [20] found an increment in microhardness of 16.5% in K403 alloy following single-shot LSP which is close to what was measured in the present study. The depth of hardened zone is extended up to 500 mm which is greater than the value (300 mm) reported by Wang et al [20]. Hua et al [25] found an increment in microhardness of 27% and the depth of hardened zone was found to be 250 mm. A ~20% increase in the microhardness value and wide hardened zone of ~700 mm was reported by Gill et al [26]. A wider hardened zone may be obtained by multiple impacts at the same point during LSP. The gradual decrease in the microhardness values with depth is related to the decrease in the dislocation density with depth as shock pressure decreases as the shock waves travel from surface towards interior of the sample. The surface experiences a maximum shock pressure which goes on in a decreasing trend. The observed surface hardening phenomena is related to the increased dislocation density following LSP surface treatment (cf. Figure 8). The enhanced surface hardening behavior of Hastelloy-X superalloys following LSP surface treatment would also improve the wear resistance of the
superalloy under study and should be a subject of future studies. It may be noted that there are some anomalies in the plot for LSP-2 and LSP-3 which indicates some additional mechanisms taking place here which is a subject for future study.

5 CONCLUSIONS

This investigation aims at studying the effectiveness of Laser Shock Peening (LSP) to tailor the surface properties of a new Hastelloy-X superalloys. This was done by focusing on understanding the evolution of phase, dislocation density, microstructure, surface hardening, and residual stress following LSP. A single-shot strategy was used to quantify depth of compressive residual stress following LSP. Microstructure and property analyses were undertaken to establish the mechanism of surface hardening. The investigation led to the following conclusions.

(i) Microstructural refinement and reduction in grain size were observed with single-shot LSP. The measured grain sizes were between 23 mm to 30 mm. The single-shot LSP showed ~60% reduction in grain size as compared to the untreated sample.

(ii) A maximum r_{ms} microstrain of 1.321×10^{-3} was measured on the surface of the Hastelloy-X. The r_{ms} microstrain increased with increase in the laser power density except for LSP-4 where confinement layer breakdown was believed to have occurred. Crystallite size showed a boost following LSP as compared to an untreated sample. With increase in laser power density, the crystallite size, respectively, showed a decreasing trend.

(iii) Single-shot LSP showed increase in dislocation density. A maximum dislocation density of 26.3×10^{13} m$^{-2}$ was measured for the laser power density of 14.1 GW/cm2. With increase in the laser power density, the dislocation density increased. However, the increment was within the same order of magnitude of untreated sample.

(iv) Single-shot LSP induced a maximum compressive residual stress of 850 MPa when laser shock peened with a laser power density of 7.96 GW/cm2. On the other hand, a laser power density of 14.1 GW/cm2 showed comparatively lower residual stress development which may be due to the confinement layer breakdown phenomena. In-depth residual stress measurement showed the depth and magnitude of compressively deformed zone varies with laser power density.

(v) The surface hardening was achieved following LSP. A maximum surface hardness of 243 HV0.1 was measured following LSP. The increased hardness of the Hastelloy-X samples following LSP will increase the
strength and wear resistance and hence, it is expected to increase the component life and reduce the repair cost although further testing and analyses are necessary.

The enhanced hardness and significantly high compressive residual stress observed in the present study would significantly contribute to the application of Hastelloy-X in a gas turbine environment as well as in high temperature gas cooled reactors where cyclic loads are prevalent.

ACKNOWLEDGEMENT

The authors of this paper would like to thank EPSRC funded laser-loan-pool scheme for granting a state-of-the-art shock peening laser system (Grant no: EP/G03088X/1, (13250017 - NSL4)).

NOMENCLATURE

\[M^2 \] Beam quality factor
\[HEL \] Hugoniot Elastic Limit (GPa)
\[P \] Peak plasma pressure (GPa)
\[I_0 \] Laser power density (W/cm²)
\[P_{avg} \] Average laser power (W)
\[f \] Pulse repetition rate (Hz)
\[Z \] Reduced shock impedance (gcm⁻²s⁻¹)
\[Z_1 \] Reduced shock impedance of nickel (4.14 × 10⁶ gcm⁻²s⁻¹)
\[Z_2 \] Reduced shock impedance of water (0.165 × 10⁶ gcm⁻²s⁻¹)
\[A \] Laser spot area (cm²)
\[E \] Laser energy (J)
\[E_t \] Total available energy (J)
\[K \] Scherer constant (≈ 1)
\[D \] Crystallite size or domain size (nm)
\[hkl \] Indices of a crystallographic plane
\[\sigma \] Lattice deformation stress (MPa)
\[b \] Burger vector (nm)
\[a \] Lattice parameter (nm)
\[S_{max} \] Maximum residual stress (MPa)
\[S_{min} \] Minimum residual stress (MPa)

Greek symbols
\[\alpha \] Efficiency of laser-material interaction (0.1 – 0.2)
\[\tau \] Laser pulse duration (ns)
\[\nu \] Poisson’s ratio of the material.
σ_{\text{dyn}}^Y \quad \text{Dynamic Yield strength (MPa)}
β \quad \text{Full width half maximum (Radian)}
θ \quad \text{X-ray diffraction angle (°)}
λ \quad \text{X-ray wavelength (nm)}
ε \quad \text{Microstrain}
ε^{hkl} \quad \text{Microstrain in the hkl direction}
<\epsilon^2>^{1/2} \quad \text{Root mean square microstrain}
ρ \quad \text{Dislocation density (1/m²)}

REFERENCES

