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By means of a data analysis, we study and confirm that the complex-
ity of Conway’s Game of Life cellular automaton (GoL) is enough to
reproduce the statistical universal properties of wealth distributions as
they are observed in real economic data. In GoL’s Economy, we inter-
pret each rebirth of a cell as the event of an agent gaining a “monetary
unit”. We show that the GoL’s “wealth distribution” generated in this
way is compatible with the exponential/gamma distribution observed
in real economical complex systems for the low and medium classes
of the population of a country or a society (thermal class). Further-
more, GoL also reproduces the power law asymptotic behavior of real
wealth distribution corresponding to the richest sector of the population
(superthermal class). Analyses of Gini index and of the stationarity of
GoL generated wealth distribution were also performed.
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1 INTRODUCTION

1.1 Cellular Automata
In their most basic form, cellular automata are discrete deterministic dyna-
mical systems in space and time whose evolution is defined in terms of local
interactions. Cellular automata were introduced in the late forties by John von
Neumann and Stanislaw Ulam as a tool to understand the biological mecha-
nisms of self-reproduction [21,36]. Due to its intrinsically simple mathemat-
ical structure and their success to model emergent phenomena in many kind
of complex systems (physical, chemical, economical and biological, archi-
tecture design in parallel computing, traffic models, programming media,
etc. [37]), cellular automata are an important research area belonging simul-
taneously to Mathematics and the Complexity Sciences.

In the seventies and thanks to an article written by Martin Gardner [25]
on a very simple but of high complex behaviour cellular automaton called
the “Game of Life”, proposed by J. H. Conway in the late sixties, cellular
automata reached with high success the community of mathematics and com-
puting fans. In fact a Game of Life generated pattern called “the glider” is the
emblem of the hacker culture. For a great collection of papers covering dif-
ferent aspects of the “Game of Life” cellular automaton, see [1].

The Game of Life

“The Game of Life” cellular automaton, from now on denoted “GoL”, con-
sists of a two-dimensional rectangular lattice with N × N cells. Each cell
may adopt one of two possible states: one (alive or white) or zero (dead or
black). In the most simple case as the one analyzed in the present work, the
Moore neighborhood with unit radius it is formed by a central rectangular cell
and its eight nearest neighbors. The Moore neighborhood is used to mediate
interactions between cells at time t and to obtain the next state of its central
cell at time step t + 1. GoL evolves by applying the following set of rules to
every one of the N × N cells of the lattice:

� Births: a cell that is dead at time t will come back to life at time
t + 1, if exactly three of its eight neighbors are alive at time t .

� Survival: a cell will survive from time t to time t + 1, if two or three
of its neighbors are alive at time t .

� Death: a cell can die by:
– Overpopulation: if a cell is alive at time t and more than three of

its neighbors are also alive, the cell will die at time t + 1.

– Exposure: if a live cell at time t has less than two living neigh-
bors, it will die at time t + 1.
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1.2 Complexity, Economy and Wealth Distribution
The strong resemblance between the behavior of certain economic pheno-
mena and the physics problem of analyze systems with an extremely big
number of interacting particles, has brought together the joint interest and
cooperation of specialists in areas such as mathematics (information theory
and stochastic processes), statistical physics and computer science, achieving
with this collaboration a deeper capacity of analyze and to study financial and
economic systems. Complex systems theory has been the tool for the study of
several related economic problems, such as the behavior of price fluctuations
in stock markets, network analysis of economic systems, financial crises and
the distribution of wealth in a society or country [16, 22, 23, 29].

Appearance of distributions with power laws is ubiquitous in the afore-
mentioned economic phenomena and it is an important characteristic of
complex systems and critical phenomena. Underlying mechanisms that pro-
duce power laws distributions are also of great interest for physicists and
scientists interested in Complex Systems. The most well known mecha-
nism of power law emergence presents in critical phenomena, such as phase
transitions, percolation and self organized criticality (SOC), although many
more mechanisms to generate power law distributions have been discov-
ered [10, 20, 26, 40].

In economics, besides the appearance of power law distributions, a wide
collection of universal, empirical statistical properties emerges, and they are
collectively known by the name of “stylized facts”, which are empirical find-
ings that are always present in all economic and financial systems. They
include, but are not limited to, absence of correlations in price variations,
long-range correlations of prices absolute values, volatility grouping, Gaus-
sian aggregation, etc. [28, 33].

On the other hand, from the microscopic point of view, in the area of
financial market models, analysis techniques called microscopic simulations
(MS) or agents based models (ABM) have been developed [14, 18] to con-
struct artificial markets, which consist of a big number of agents, with preset
interactions and used to investigate the global evolution of the real system.
This line of research has generated several models capable of reproducing the
stylized facts observed in real economic phenomena [13, 38].

The fact that a relatively simple, microscopic simulation can reproduce
the stylized facts observed in the real economy, with all its complexity, is
promising and has led to the task of building artificial stock markets through
agents models and cellular automata models as GoL and others [17, 24, 34,
39].

In the particular case of the problem of understanding the distribution
of wealth in a country or society, by simulating closed economical sys-
tems where number of agents and money are conserved, and considering the
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money as the analog of energy, the emerging equilibrium probability dis-
tribution of wealth is the exponential Boltzmann-Gibbs distribution [5], in
agreement with classical statistical mechanics ensemble theory [12].

Now, it is a well known empirical fact that a combination of two distribu-
tions describes the individual distribution of wealth of a country or society:
the wealth distribution of the lower and medium income sectors of the pop-
ulation follows a gamma distribution and wealth distribution of the highest
income sector of the population decays as a power law [6]. For a complete
discussion of this issue with an intensive bibliography, see [4, 23].

The joint emergence of these particular two distributions in a single sys-
tem it is not a very common phenomenon. Regarding to the socio-economic
problem of wealth distribution, in analogy with [7], and in a very interesting
paper [27], V. Yakovenko and Sylva refer to the exponential and Pareto com-
ponents of wealth distribution as thermal and superthermal income classes
respectively.

Reference [23] presents and discusses different multi-agent exchange
models, where one in particular, that in presence of savings, reproduces the
real wealth distribution property of having the low and medium income sec-
tors well described by a gamma distribution and still the wealth of the rich-
est part of the populations decaying as a power law. Same last cited refer-
ence presents the pertinent bibliography in the topic of gas like and kinetic
exchange models.

It is pertinent here again to remark that besides wealth distribution,
the simultaneous emergence of the combination of exponential/gamma and
power law distributions in a single system or phenomenon is not very com-
mon, we can point out other well known examples of the coordinated appear-
ance of these two distributions: firstly observed in plasma physics and astro-
physics phenomena [7, 19, 32], in heavy ion physics [2], songs rankings [8],
the Ising Model [34] and in GoL generated wealth distribution as is shown in
the present paper.

We show in this research that the wealth distribution generated by GoL
also displays a thermal and a superthermal income classes.

This paper is the natural continuation of [9] and [34], where we demon-
strate that GoL fluctuations studied as a diffusion process behave as a geo-
metrical Random Walk and reproduces the stylized facts of financial time
series respectively.

2 CONSTRUCTION OF THE DATA SAMPLE AND THE GOL
GENERATED “WEALTH DISTRIBUTION”

The data sets analyzed in this study were generated from the dynamics of
Conway’s Game of Life. Our implementation of the Game of Life uses
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periodic boundary conditions, an initial state with a certain percentage of
living cells randomly selected and uniformly distributed in a lattice size of
N × N = 3000 × 3000 cells. The system is let to evolve, and at each time
step, states of all cells in the lattice are updated according to GoL’s rule. For
each cell, we keep a counter that is increased by one unit every time a dead
cell becomes alive, and this increment is interpreted as the cell’s gaining of
an unit of money.

After 500 time steps, we obtain a data set with N × N = 3000 × 3000 =
9000000 entries, with records of the number of times each cell was brought
back to life, i.e. the “wealth” of every cell. This calculation is made with
initial densities of randomly allocated living cells of 20%, 30%, 40% and
50%, in order to obtain four data sets to be analyzed. Finally, and in order
to obtain the wealth distribution with a minimum wealth equal to zero, we
locate the cell with minimum “richness” and subtract this wealth value to
every wealth value of all other cells in the lattice.

As an illustration of the above explained, panels of Figure 1 display the
histogram of the wealth distribution, where wealth is denoted by w, obtained
from GoL dynamics with a 3000 × 3000 lattice size and 20% initial alive
cells. Upper panel subfigures, 1(a) to 1(c), show the overall of the correspond-
ing wealth distribution in linear, log-vertical and log-log scales respectively;
whereas lower panel subfigures 1(d) to 1(f) show the same distribution for the
cases where w < 60 in linear and log-vertical scales and its plot in the region
w > 60 in a log-log scale respectively. From the last two subfigures 1(e) and
1(f), it is evident that the wealth distribution generated by GoL contains an
exponential and an asymptotic power law parts. The red line is not a fit and
is only used to evidence the exponential and power law decays. In subsection
3.2, we will show the corresponding fits of the gamma and log-normal distri-
butions for the poorer and medium regions of wealth distribution and the fit
of the power law to the richest segment of population. Fits were performed
using the CERN numerical minimization computer program Minuit, embe-
ded as a C++ class in the ROOT software package [31]. We do not perform
the exponential fit in our analysis because gamma distribution encompasses
as a factor this model.

2.1 Decreasing noise induced by periodical configurations: Limiting
the number of generations

We have chosen by trial and error to stop GoL simulation after 500 genera-
tions. This is done because selecting a bigger number of time steps implies
recording a higher number of events in the tail of the wealth distribution
coming from persistent configuration or patterns of cells that change state
periodically in time, as for example the “Blinker”, which we consider for the
goals of this paper, as a source of noise, since cells in these patterns extend
the tail of the wealth distribution to infinity when the number of times steps
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(a) (b) (c)

(d) (e) (f)

FIGURE 1
Wealth distribution generated with a lattice size of nine millions of cells and 500 time steps.
Different scales and regions are shown. (a) to (c), overall of the wealth distribution in scales
linear, log-vertical and log-log respectively. (d) and (e) linear and log-vertical scales for the
region w < 60. (f) Wealth distribution for region w > 60 in a log-log scale. Red straight lines are
not fits, they are only useful to evidence the exponential and power law decays. Corresponding
fits are shown in subsection 3.2.

increases without limit. Other reason to select a short number of time steps
to generate the data samples, is because after some time, GoL reaches a qui-
escent state, far away of any possible critical state, the one of interest, with
power law signatures [30].

3 DATA ANALYSIS

The data analyses performed to the generated data, consist first of a stationa-
rity distribution analysis. This study assures our results do not depend of the
lattice selected size. The second analysis consists in showing that the wealth
distribution generated by GoL is consistent with the empirical distribution
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observed in different complex systems, in particular with the shape of the
wealth distribution observed in real data of socio-economic systems. Finally,
a calculation of the Gini index of the GoL-generated wealth distribution is
presented, useful to compare “inequality” of GoL-generated wealth distribu-
tion with real data.

3.1 Spatial stationarity of the empirical wealth distribution
In this subsection we show that 500 time steps, GoL generated random sub-
samples with different sizes, obtained from the 3000 × 3000 elements data
samples, for a fixed initial density of alive cells, maintain their distribution
unchanged. We select, for each one of our samples with initial densities
of alive cells, 20%, 30%, 40% and 50% fifteen random subsamples with
the following sizes: 10 × 103, 30 × 103, 50 × 103, 100 × 103, 200 × 103,
500 × 103, 1 × 106, 2 × 106, 3 × 106, 4 × 106, 5 × 106, 6 × 106, 7 × 106,
8 × 106 and 9 × 106 cells. The last number corresponds to the overall of the
generated data of a particular GoL generated data sample.

In order to assure the spatial stationarity of our data, we plotted size, i.e.
the number of cells of the the previous specified subsamples vs the four first
central moments of these data sets, i.e. their mean, standard deviation, kurto-
sis and skewness. The experiment was repeated three times. Corresponding
plots are displayed in Figure 2. We can see the values of the four central

(a) Mean (b) Standard Deviation

(c) Skewness (d) Kurtosis

FIGURE 2
Four first statistical central moments dependency on size of 15 the different generated data sub-
samples for the four initial densities of alive cells. The experiment was repeated three times.
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moments become virtually constant as sample size increases, depending only
of the initial density of alive cells.

We are aware that by following this empirical methodology to assure the
stationarity of a distribution, would imply to show all distribution central
moments, i.e., an infinite number of them, are constant, clearly an impractical
task. However, for the most of practical applications it is enough to work with
the first four central moments of a distribution.

3.2 Fitting the GoL generated wealth distribution
In this subsection, we show that GoL-generated wealth distribution has the
same shape that the one universally observed in real socio-economic systems.
To achieve this goal, we analyze as described below, the sets of four GoL gen-
erated wealth distributions with 20%, 30%, 40% and 50% of initial randomly
allocated living cells, all with lattice sizes of 3000 × 3000.

The most well known statistical models used by social scientists and
econophysicists to fit wealth distribution are the following:

M.1 The Gibbs-Boltzmann distribution (exponential):

f (x) = KG Be−x/T

with decay constant 1
T .

M.2 Gamma distribution:

f (x) = KG xk−1e−x/θ

where k and θ are the gamma shape and form parameters respec-
tively.

M.3 The log-normal distribution:

f (x) = KL N
1

x
e−(ln x−m)2/2n2

where parameters m and n are the mean and deviation of the distri-
bution. And finally,

M.4 The power law distribution:

f (x) = K P L x−α

where α is called the power value or shape parameter of the distri-
bution.
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Here KG B , KG , KL N and K P L are treated as constants and all parameters
and these constants are obtained from the fitting procedure described next.

Models M.1 to M.3 describe the wealth distribution of the low and
medium classes segments of the population. Is well known that the expo-
nential or Gibbs-Boltzmann model M.1, as statistical physics postulates
describes the energy distribution in a system with many particles where
number of particles and energy are conserved, i.e. the system is closed
and the change of energy of individual particles is only due to particle to
particle interactions (exchange) and reallocation of energy or, in our case
wealth. Gamma model M.2 is the one econophysicists prefer. This model is
favored for physicists because includes the exponential factor emerging from
exchange and reallocation of wealth or energy from statistical physics and
a second power law factor statistically describing other phenomena, such as
savings or enrichment (wealth condensation). Empirically, the gamma dis-
tribution seems to describe correctly the wealth of low and medium income
segments of a population [3, 4, 42]; Log-Normal model M.3 is preferred by
economists and social scientist to statistically describe wealth of a popula-
tion [11, 43], and finally Model M.4 describes correctly the wealth distribu-
tion of the richest sector of a population, It was used firstly by Vilfredo Pareto
with the purpose of describing wealth economic data of diverse societies [41].

In this paper we do not present a fit of the Gibbs-Boltzmann model M.1 to
the GoL-generated wealth distribution due to the following two reasons:

1. M.1 model describes wealth distribution of very simple agents
models, i.e. ideal-gas alike models and does not describe correctly
the concave shape of GoL-generated wealth distribution observed
in figure 3, meaning that the lowest income segment of population
is not well described by this model.

2. Gamma model M.2 encompasses the exponential factor correspond-
ing to model M.1 (contains it as a factor).

Fits of models M.3 to M.4 to the four data sets of GoL-generated wealth
distributions are shown in Figure 3. In all subfigures we can clearly observe
an asymptotic power law distribution, which corresponds to the “richest” seg-
ment of the GoL-generated wealth distribution and apparently good Gamma
and log-normal fits to the sector of medium income and poorest agents. The
Boltzmann-Gibbs distribution was not performed for the reasons explained
above.

Methodology and quality of fits
In this subsection we assess the quality of the fits shown in the figure 3 sep-
arately, i.e. the quality of statistical models fitting empirical data for the ther-
mal (log-normal/gamma) and superthermal (power law) classes.
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(a) 20% of live cells (b) 30% of live cells

(c) 40% of live cells (d) 50% of live cells

FIGURE 3
Fits of wealth distribution for our data generated sets. An asymptotic power laws fits well the
richest regions of population (right of the graphs). Log-Normal and Gamma fits were applied to
the lower and medium income region. All fits are displayed separately in figures 5 and 6 below.

Since each data sample has 9 × 109 entries, a really huge statistics, small
deviation of the theoretical fitted model from the empirical distribution are
important and it is very hard to perform a direct and standard goodness of fit
test and/or the obtained result may be misleading [35].

Table 1 shows the analysed statistics for low/medium income (thermal)
and higher income (superthermal) regions. The cut off value separating these

% initial Low/medium High income Power law fitted
alive cells income (w < 60) (w > 60) region (60 < w < 200)

20% 8908312 91688 83456
30% 8909102 90898 83861
40% 8909463 90537 83421
50% 8908727 91273 83911

TABLE 1
Statistics (number of records) of analyzed samples for a cut off value of w =
60 monetary units, separating thermal (low/medium) and superthermal (high)
income classes. Total number of entries for each sample is 9 × 109 records. Last
column shows the region of the superthermal income class where the power law
model was fitted to data.
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classes is w = 60 and was selected by eye. In fact the separation between
these regions is very clear and no further statistic procedure to estimate the
cut off value was needed [15]. An additional cut-off in the high income region
was applied, limiting our analysis of this superthermal income class to the
region 60 < w < 200. This is useful to eliminate finite lattice, border size
effects and high periodicity, non complex events as for example “blinkers”
and other periodic patterns, mentioned in subsection 2.1

Fitting GoL-generated Wealth distribution: Thermal income class

In this case, and especially due to the high statistics of the low/medium
income region, it is better to work on the Cumulative Distribution Func-
tion, defined for a continuous random variable W , in our case cells individual
wealth distribution, in the usual way:

WC DF(w) := Prob{W < w} =
∫ w

0
f (x)dx (1)

Where w ≥ 0, and f (w) is the wealth Probability Density Function (PDF)
obtained from GoL generated data and plotted for each one of our four
data samples in figure 3. Wealth Cumulative Distribution Function (CDF)
denoted WCDF for the four data samples analysed are displayed in figure 4

FIGURE 4
Wealth CDF, denoted WCDF for GoL generated data and Gamma and Log-Normal Fits for 20%,
30%, 40% and 50% samples for w < 60. Apparently both models fit well the data. See figure 5
for a further comparison of data with these two fits.
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FIGURE 5
Panels a) to d) show the scatter plots of empirical WCDF vs theoretical fitted gamma CDF and
panels e) to h) WCDF vs theoretical fitted log-normal CDF. A linear fit has been performed
on each one of the different data samples. Corresponding chi-square of linear fits are shown in
tables 2 and 3.

which compare data with fitted gamma and log-Normal models. This fitting
approach of using data CDF instead of the histogram distribution has also the
advantage of being bin size independent.

In order to further assess the quality of gamma and log-normal fits to GoL-
generated wealth distribution, in figure 5 we show scatter plots of wealth
CDF versus gamma CDF and versus log-normal CDF fits, denoted GCDF
and LCDF respectively.

A linear fit is performed on these two scatter plots. Visually we appreciate
that Gamma model fits much better the GoL generated wealth distribution
data. In fact Log-Normal fit oscillates around and closer to data. Slope of
linear fits and corresponding χ2/nd f for gamma and log-normal models can
be consulted in fifth and sixth columns of tables 2 and 3 respectively. These
parameters confirm that gamma model fits better the data.

Fitting GoL-generated Wealth distribution: super-thermal income class

For the highest income sector of population, the GoL-generated Wealth dis-
tribution, is well fitted by the power law model, as figure 6 shows. Since the
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% initial Gamma, 0 < w < 60

alive cells KG k θ s χ2/nd f

20% 0.9859 ± 0.0003 2.0702 ± 0.0012 6.5765 ± 0.0037 0.980 × 0.003 6.9267 × 10−8/58

30% 0.9843 ± 0.0003 2.4827 ± 0.0002 6.0142 ± 0.0002 0.995 × 0.003 4.6381 × 10−8/58

40% 0.9848 ± 0.0003 2.5083 ± 0.0013 6.0119 ± 0.0032 0.997 × 0.003 4.4588 × 10−8/58

50% 0.9850 ± 0.0003 2.3198 ± 0.0012 6.2060 ± 0.0033 0.977 × 0.003 5.1392 × 10−8/58

TABLE 2
Second to third columns show the values of gamma fit parameters of wealth distribution shown
in figure 3 for the four data samples that are indicated in first column. Fifth column show the
slope of the linear fit applied to the scatter plot of CDF GoL-generated wealth (WCDF) vs CDF
of the fitted gamma model (GCDF) from figure 5. χ2/nd f displayed value corresponds to the
linear fit of WCDF vs GCDF shown in figure 5. Finally ndf means number of degree of fredom.

% initial Log-Normal, 0 < w < 60

alive cells Kln m n s χ2/nd f

20% 0.9172 ± 0.0003 2.4137 ± 0.0003 0.6927 ± 0.0002 1.074 ± 0.017 1.4622 × 10−6/58

30% 0.9283 ± 0.0003 2.5372 ± 0.0003 0.6.3140 ± 0.0002 1.073 ± 0.017 1.6356 × 10−6/58

40% 0.9298 ± 0.0003 2.5460 ± 0.0003 0.6297 ± 0.00024 1.075 ± 0.017 1.6753 × 10−6/58

50% 0.9247 ± 0.0003 2.4885 ± 0.0003 0.6535 ± 0.0002 1.045 ± 0.013 9.2614 × 10−7/58

TABLE 3
Log-Normal fit parameters for figures 3 and 5. Again χ2/nd f value corresponds to the linear fit
to WCDF vs LCDF scatter plot from figure 5 and ndf means number of degree of fredom.

FIGURE 6
Power Law fits performed on tails of GoL-generated wealth distribution. Power law exponents
are really negative as exponent in power law model M.4 indicates. Fits are performed on the
corresponding CDF.
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% initial Power Law, 60 < w < 200
alive cells KP L α χ2/nd f

20% −1.246 ± 0.079 1.772 ± 0.016 0.5656 /137
30% −0.931 ± 0.083 1.840 ± 0.017 0.6203 /137
40% −0.789 ± 0.096 1.871 ± 0.020 0.8410 /137
50% −1.170 ± 0.078 1.787 ± 0.016 0.5535 / 137

TABLE 4
Power Law fit parameters. Data samples, proportionality con-
stant, Pareto exponent and χ2/nd f are displayed in corresponding
columns. The selected fitted region is 60 < w < 200. Note that expo-
nents indicated by formula of power law model M.4 are negative.

power law is very clear, the fit procedure is performed on the CDF points.
As mentioned before, for the richest population, the selected fitted region
of wealth distribution is 60 < w < 200. The lower cut-off value, w = 60 as
mentioned before, was selected by eye, because starting domain of the power
law regime is clearly delimited in all wealth distributions plots displayed at
figure 3 for all our data samples.

The upper cut off value w = 200 was selected to eliminate noise com-
ing from periodic GoL patterns as explained above at section 2.1, as well
as border size effects, visible for big values of wealth as a sudden and fast
descending “step” at the end of the domain of plots of wealth distribution of
same figure 3 and figure (1f). Perhaps we could select a higher than w = 200,
upper cut off value, but since the power law signal distribution is very clear
and covers a bit more than three quarters of the total domain of wealth dis-
tribution, this “safe” selection for the upper cut is enough good to evidence
visually and statistically the emergence of a power law in the GoL gener-
ated wealth distribution, i.e. the emergence of a superthermal income class
following [27] terminology. The values of Pareto exponents obtained by the
fitting procedure showed at figure 6, that is a zoom in of figure 3 at the region
60 < w < 200, are displayed in table 4.

4 GINI COEFFICIENT OF THE GOL GENERATED WEALTH
DISTRIBUTION

The Gini index or Gini coefficient is an economic indicator that allows to
quantify the inequality of a distribution of wealth, and is defined as:

G =

N∑
i=1

N∑
j=1

∣∣xi − x j

∣∣

2N 2μ
(2)
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% initial alive cells: 20% 30% 40% 50% 60%

Gini: 0.428 0.384 0.381 0.399 0.472

TABLE 5
Gini Coefficients for each one of the four GoL generated samples. An
additional Gini value for a sample with 60% of initial alive cells has
been included.

Where N is the number of agents, μ is the mean value of the wealth distribu-
tion and xi , I = 1, . . . , N is the wealth of the i − th agent.

The Gini index varies from one to zero, being zero the case in which each
individual of a population has the same amount of money and one when a
single individual accumulates all the wealth of the system. Many countries
and international institutions have used the Gini index, among other simi-
lar indexes, being possibly the world’s most common indicator of inequality
between rich and poor sectors of a country or society. Gini index has been
measured throughout the world, ranging from 0.250 (Ukraine at 2016) to
0.571 (Zambia at 2015) [44].

We calculate the Gini index for the already analyzed data samples and one
additional GoL-generated sample with an initial density of live cells of 60%.
Results are shown in the Table 5, where one can see that these values are very
close to those of the presented by the economic global indicators.

Lorenz curve of GoL-generated wealth distribution

The Lorenz curve is a graphical representation of the relative distribution
of a population’s income, the Gini index is the quotient between the areas
generated by this curve and the equity line. Corresponding Lorenz curves of
samples generated by GoL data can be consulted in figure 7.

5 DISCUSSION AND SUMMARY

In this paper we confirm that complexity of Conway’s Game of Life cellular
automaton is rich enough to reproduce all the universal statistical proper-
ties that are found in wealth distributions of real socio-economic systems.
Unlike a simple, closed system with a fixed number of interacting particles
that generates a Gibbs-Boltzmann (exponential) distribution by only real-
locating wealth between their different agents (thermal income class), the
wealth distribution generated by GoL shows an asymptotic power law decay
corresponding to the wealth of the richest segment of the population, the sec-
tor where wealth is created (superthermal income class).
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FIGURE 7
Lorenz curves for the analyzed data, the initial percentages of live cells are indicated. Again an
additional Lorentz curve for a sample with 60% of initial alive cells has been included.

We show that medium and low segments of the distribution generated by
GoL follow a gamma distribution. This distribution is observed in real socio-
economic data describing the low-medium wealth sector of a population.
Econophysics agent based models explain the origin of the gamma distri-
bution as emerging from the the processes of reallocating wealth (energy)
between the agents plus additionaly, the presence of savings [23].

Furthermore, the simultaneous emergence in GoL of the two income
classes, thermal and superthermal as observed in socio-economic real data, is
really a non-trivial emergent property than not many complex systems share.

In our opinion it is astonishing the way a very simple system, such as
GoL is able to display and reproduce such a rich, complicated and realistic
behavior. GoL automaton may be the simplest system capable of doing this.

As a final corollary, a fundamental explanation of the source of all empir-
ical properties reported in this paper would be a truly interesting and worth-
while goal to achieve.
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