
©2020 Old City Publishing, Inc.
Published by license under the OCP Science imprint,

a member of the Old City Publishing Group

Int. Journ. of Unconventional Computing, Vol. 16, pp. 41–78
Reprints available directly from the publisher
Photocopying permitted by license only

41

Cancer’s Intelligence

J. James Frost†

BioMolecular Imaging, 3801 Canterbury Road, Ste. 914, Baltimore, Maryland 21218, USA;  
Phone +1-443-869-2267; E-mail: jfrost@jhmi.edu 

Received: September 15, 2020. Accepted: September 25, 2020. 

Cancer is analyzed as an intelligent system of collaborating and computing 
cells. The limitations of the current regime of cancer research and treatment 
are addressed, and the resultant need for new paradigmatic thinking is pre-
sented. Features of intelligence pervade the natural world from humans to 
animals of all sizes and complexity to microorganisms. Yet, cancer has hith-
erto not been investigated as acting with intelligence as it evades the body’s 
and the oncologist’s failed attempts to eradicate it. In this analysis, concepts 
of computation, including self computation and the limits of computation; 
game playing; e-machine analysis; self-aware systems; P and NP-hard 
problems; and Boolean networks are addressed and related to features of 
cancer that can be described as intelligent. The implications of the devel-
oped theory of cancer’s intelligence are discussed, together with several 
signposts and recommendations for new cancer research.  
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1  Introduction

The grim plight of cancer continues to endure in the face of legions of tar-
geted drugs, reams of cancer gene data, and multitudes of physicists and 
mathematicians on the attack (1). A pressing need for a new and foundational 
conceptual framework persists. The reductionist paradigm has largely failed 
to produce the insights needed to fully solve the cancer problem. Single-fac-
tor causal explanations and overreliance on deep sequencing of DNA and 
RNA, for example, are emblematic of trapped thinking within the reduction-
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ist box canyon of prevailing cancer research (1-3). In short, the plural of 
cancer cell is not cancer. 

This article is not about “cancer intelligence”, a term that refers to using 
human and more recently, artificial intelligence to combat cancer. A few of 
the many examples are the National Cancer Intelligence Network; “intelli-
gent drug delivery”; Watson’s Artificial Intelligence System for Cancer 
Care; artificial intelligence in image analysis; the “intelligent knife” for 
cancer surgery; and – last but not least – the intelligent mind of the oncolo-
gist. Rather, this article addresses the obverse problem: cancer’s own intel-
ligence. If we are to apply human-derived intelligence to battle cancer, we 
must understand the extent to which cancer possesses an intelligence in its 
own warfare against us. 

The paper proceeds as follows. Section 2 lays out the framework for con-
sidering any entity as intelligent and reduces the current focus to computa-
tional intelligence. Section 3 addresses the concept of intrinsic computation 
and the relevance to any self-organizing, evolving, self-computing system. 
Section 4 lays the foundation for advanced game play computation in cancer 
by addressing advances in human game play, focusing on the recent AI devel-
opments in the highly complex game of poker. This section introduces decep-
tion and bluffing in poker play and its relevance to cancer. Section 5 shifts 
back to cancer and currently available game theoretical approaches for under-
standing and treating cancer, including the topic of cancer quiescence as a 
bluffing mechanism. Section 6 addresses signaling and information transfer 
mechanisms in cancer, which give essential insight into cancer game play, but 
require ongoing elucidation by the oncologist using different technologies. 
Section 7 introduces computation on Boolean networks as mechanism for 
measuring the computation capability of cancer and its pathways in order to 
identify computational solutions to cancer treatment. Section 8 ties together 
the concepts of Sections 2-7, identifies the remaining unknowns and offers 9 
signposts and recommendations for future investigation. Supplements 1, 2, 
and 3 further expand the discussion of intelligence as applied to cancer; com-
putation and its limits; and cancer computation on Boolean networks. 

The current work develops a new approach to advanced personalized 
oncology where elucidation of the patient’s intrinsic cancer computational 
machine and its game play strategies, coupled to recent developments in AI 
human gameplay, including bluffing and deception, can lead to vastly 
improved strategies for the oncologist to defeat the patient’s cancer.

2  Intelligence

What is intelligence and what is intelligent? Broadly, features of intelligence 
include the ability to learn from experience; solve problems; and use knowl-
edge to adapt to new situations. One may also consider types of intelligence, 
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such as analytical, creative, practical and emotional. Examples of more 
detailed definitions of intelligence are: 

…a human intellectual competence must entail a set of skills of 
problem solving — enabling the individual to resolve genuine prob-
lems or difficulties that he or she encounters and, when appropriate, 
to create an effective product — and must also entail the potential 
for finding or creating problems — and thereby laying the ground-
work for the acquisition of new knowledge (4)

and

Intelligence is a force, F, that acts so as to maximize future freedom 
of action. It acts to maximize future freedom of action, or keep 
options open, with some strength T, with the diversity of possible 
accessible futures, S, up to some future time horizon, τ. In short, 
intelligence doesn’t like to get trapped (5, 6) 

The latter definition can be related to Kaufman’s account of maximization of 
the “adjacent possible”, a foundational feature of complex adaptive biologi-
cal systems (7, 8). Only a tiny fraction of all possible configurations of bio-
logical matter has even been realized in the history of the earth, but the vast 
possibility space available is responsible for all that we witness. Navigation 
of this space to survive requires the intelligence to learn, problem solve and 
adapt. 

Understanding, comprehension and even conscious agency are features of 
human life that are related to intelligence, but are not necessary features of 
intelligence. Therefore, none of the following discussion should be conflated 
with aspects of human or animal conscious agency. Without comprehension, 
intelligence can be viewed as computational intelligence with memory, more 
of which will be addressed below. In this way, human intelligence and that of 
animals, plants and other lower life forms, including cancer, can be consid-
ered. Even the intelligence of bacterial swarms has been described, including 
the ability to “collectively glean information from the environment and pro-
cess it, develop group identity, detect cheaters and defectors, plan for the 
future, learn from experience, solve problems and engage in group wide deci-
sion making” (9, 10). Thinking of cancer as an intelligent entity is a major 
conceptual change, which requires a detailed evaluation of intelligence and 
laying the predicate for a relation to cancer at each step. 

Quantification and modeling of intelligence from the standpoint of infor-
mation, entropy and even computational self-awareness (see Supplement 2) 
is an active area of investigation (4, 11-21). Intelligent play of computation-
ally difficult games with asymmetric information is addressed below and 
linked to natural computation in biological systems. Maximization of avail-
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able entropy for possible evolution pathways in non-equilibrium complex 
adaptive systems is a key element of intelligent systems and can be viewed 
a measure of the adjacent possible, that is, a way to capture the possible 
future histories of a dynamic evolving system (5, 15, 22). As an entropic 
force, its deep relationship to the human “cognitive niche” may also have 
relevance to cancer as a computationally intelligent system (5, 23, 24). 
Other aspects of intelligence relevant to cancer systems addressed below 
are deception, learning, memory, pre-computation of future actions and 
self-awareness (see Supplement 2). Other aspects of contemporary theories 
of biological intelligence and the relationships to cancer are addressed in 
Supplement 1.

3  Computation

What is computation and what can compute? What are the limits of computa-
tion? Can something compute itself? Before computation, as we currently 
view the term, there was calculation, for example by moving pebbles along a 
line, using knotted strings, by use of an abacus, or using the addition and 
multiple tables that we all memorized. Calculation is a prerequisite for com-
putation. Computation adds logical circuits, an analog-to-digital transforma-
tion and greatly increased accuracy for difficult problems. The history of 
calculation and computation from Babbage to Leibniz to Turing and now to 
the threshold of quantum computing is a remarkable aspect of human devel-
opment. The first computers were humans themselves, low-paid clerks known 
as a computer or computor, who performed computations for the military, 
business and the science and engineering community (25). It is well accepted 
that the human brain can compute, as oncologists demonstrate every day 
when they strive to treat their patients with cancer. 

3.1  What can compute?
Beyond pebbles, knots on a string and a slide rule, we think of computation 
or computers as silicon-based, that is, constructed of semiconductor transis-
tors as the logic gates. Any material, however, that can implement a digital 
switch can compute. One example is chemical reaction sequence that is 
designed to be a reaction-diffusion system, such as the well-known Belousov-
Zhabotinsky (BZ) reaction (26). Others are liquid crystals, carbon nanotubes 
and conductive foams (27, 28). Biological substances are another class of 
materials that can compute. DNA itself can be used as a computation medium 
for a number of functions and can even be used to provide solutions to the 
traveling salesman problem (29, 30). Self-propelled actin filaments or micro-
tubules can also be harnessed for biological computation (31). At present, 
silicon-based computers outperform biological computers by a few orders of 
magnitude, but the difference is expected to narrow (32). In contrast, the 
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energy efficiency of biological computing radically outstrips that of conven-
tional computers (32). 

DNA in a gene regulatory circuit can also compute specific outputs from 
known inputs, for example a newly synthesized protein from transcription 
factor inputs (33-37). Computation on chromatin itself, including methyla-
tion and acetylation, has been studied as a type of epigenetic computing 
(38). Bacterial genetic regulatory circuits can also be used to provide solu-
tions to the traveling salesman problem (39). The slime mold is a simple, 
but complete, organism that is well known for its computational abilities 
(40, 41). Cancer, as individual cancer cells or a cancer system consisting of 
many cell types over several organs, is another level up in complexity and 
is able to compute its own survival, similar to bacteria (10). A key question: 
what is the computational power of a cancer network and can cancer be out-
computed by the oncologist together with new artificial intelligence (AI) 
tools? 

3.2  Intrinsic computation
We, as users of computational machines, that is, computers, think of an exter-
nal device that is designed to perform specific operations of interest to us and 
with a defined purpose or usefulness. We are the agents who select the inputs, 
chose the computational process and observe the outputs. The outputs com-
monly relate to environmental factors that we seek to understand or modify 
for our needs.

Intrinsic computation, by contrast, refers to a dynamical entity, system or 
process that internally computes its own evolution over time and space, but 
without a defined utility (42-45). This evolution is governed by forces, parti-
cles, equations of motion and logical operations that can be viewed as a form 
of self or intrinsic computation. Just as for a desktop computer, memory, 
computational architecture and speed are key features of intrinsic computa-
tion. Defining the self-computing system defines the environment (everything 
else); the environment is one of the inputs to the system. The system can take 
information from the environment, process it and use the new information for 
self-modification or to modify the environment. 

Key questions to understand for intrinsic computation are (46): 

1)	 how much of the past does a process store? 
2)	 in what architecture is that information stored?
3)	 how is that information used to produce new information and future 

behavior?

What can be intrinsically computed? Back to our example of the universe and 
its memory and computing potential, the universe can be viewed as a self-
computing process using the laws of particles and forces to determine its own 
evolution since the time of big bang (47). That is, the universe computed 
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itself. As discussed previously, this is massive self-computation based on a 
maximum memory of some 1090 bits. Less massive entities on earth also self 
compute. For example, animals self compute their own formation in utero. 
The tiger’s stripes and the five digits of the human hand are formed by chem-
ical computation using a type of Besoulov-Zhabotinskyreaction (vide supra). 
This, in turn, creates Turing waves to ultimately form the tiger’s light and 
dark stripes or the five fingers of the hand (48-50). The actions of a single cell 
can also be viewed as self-computation with both internal and environmental 
inputs. 

All purpose-built computers are limited by their computing architecture 
and memory—the same is the case for intrinsic computation. For intrinsic 
computation, capturing information about the environment and storing the 
information as knowledge for future actions is a key feature. How can the 
environmental experience be encapsulated by the agent, processed and 
stored? What is the upper bound for a specific system or process? What is the 
language for environmental sensing and for internal information processing? 
How does the agent self innovate its internal architecture in order to improve 
its computational accuracy and speed in response to new environmental? In 
the theory of intrinsic computation these questions are addressed by model-
ing an e-machine for the agent.

The e-machine is an inferential model of the internal information captur-
ing and processing apparatus that permits the system to read the environ-
ment’s information and rate of change; store and process that information; 
create an internal efficient model representation of the environment; and 
use the model for future decisions and actions (51-54) (Figure 1). The 
e-machine is a type of hidden Markov chain model. The internal model can 

Figure 1 
The e-Machine. 
The detailed inner mechanisms of dynamical systems, including natural systems, are hidden 
from direct observation. Measurement of the system’s time series of outputs by external instru-
ments, that is the communication channel, permits reconstruction of a statistical causal model of 
the original system. 
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be updated, memory permitting, to create better environment models of 
change and possible futures. A new computing architecture can also be cre-
ated leading to a phase transition in computational capability, like going 
from Babbage’s gear-based calculating machines to silicon-based comput-
ers or from BASIC to FORTRAN to Google’s GO programing languages. 
An abrupt change in the system’s e-machine is emergence, where a new 
computational regime arises that is not predicable from the earlier state. 
This leads to a more powerful level of intrinsic computation with a greatly 
enhanced potential to alter the environment or to develop a diminished sen-
sitivity to environmental effects by minimizing the difference between the 
environment’s actual information and that of the agent’s internal model. 
This process is bounded since the agent must devote resources to creating 
the computational architecture and to performing the computational tasks. 

The e-machine and its evolution can be described by its structural or sta-
tistical complexity (its size) and by its Shannon entropy (H) rate. Shannon 
entropy is information, as defined by Shannon. The difference between the 
agent’s actual entropy rate and that of the environment determines the fre-
quency of incorrect predictions and decisions that do not improve the state of 
the agent and its survival (55). A system can be characterized by the complex-
ity-entropy diagram (56), which specifies how a system stores, organizes and 
processes information. The e-machine is a causal model in that past internal 
state configurations of the model lead to a predictable future state with a 
defined probability; more that one past state configuration can lead to the 
same future. A major goal of current information theory is to construct a pro-
cess e-machine from minimal empirical data of past system behaviors. The 
full internal structure of nature is inaccessible to us; the e-machine provides 
an optimal and smallest size representation of specific system behaviors of 
interest. 

As a predictive model, e-machine theory has been applied to the analysis 
of diverse complex systems, including the stock market, weather, geophysics, 
Monod-Wyman-Changeux molecules, and neurophysiology (57-62). In can-
cer, knowledge of the detailed internal computational structure of a single 
cancer cell or a distributed cancer network would be highly desirable. Full 
understanding of the internal causal state structure of cancer would improve 
the oncologist’s ability to predict its natural evolution and more importantly, 
predict the response of the cancer system to therapeutic interventions, and to 
target the specific internal states that have the greatest weight in survival 
mechanisms. To our knowledge, e-machine analysis has not yet been applied 
to cancer in spite of its current preeminence in information theory. Whether 
the cancer e-machine(s) is a relatively constant computational cellular and 
network machine that computes cancer’s complex self-evolution or whether 
the e-machine itself is time variant will be a question for future investigation. 
(See Appendix 2 for additional discussion on the limits of computation and 
self-aware computation.)
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4  Complex Games 

4.1 M agnitude of the Problem
Card, board and computer games can serve as a model for intrinsic computa-
tion in natural processes. As an agent plays a game to win against another 
player or players (the environment), so does a cell or cellular network in its 
environment in order to win its game: survival. The computational intelli-
gence required to win in a game increases rapidly as the size of the game 
increases. Game complexity can be quantified as the number of decisions a 
player has to make in any complete game; this is the decision tree of a game. 
The state space complexity is the number of positions that can be theoreti-
cally reached from the initial game position.

In tic-tac-toe there are 9 squares and three states for each square (empty, X 
or O). The total state space is 39 or 19,683. When illegal moves and symme-
tries of board rotation and reflection are taken into account the actual state 
space is 765 or, for comparison purposes, approximately 103. The decision 
tree complexity is 105(63). Tic-tac-toe can be generalized to any m, n, k game 
played on an m by n board where the first player to get k in a row wins. Game 
complexity increases rapidly as m, n, and k increase. For example, in the 
game Connect Four the state space complexity increases to 1013 with a deci-
sion tree size of 1021 (64).

Game complexity is also determined by the rules of the game. Tic-tac-toe 
and its generalizations have simple rules where the complexity increase in the 
generalizations is driven solely by the board size increase. Games with more 
complex rules like checkers, backgammon, chess, and poker (limit Texas 
hold’em) have vastly increased state space sizes: 1020, 1020, 1047 and 1014, 
respectively. No-limit Texas hold’em increases further to the truly astronom-
ical size of 10140 with 10160 decision points — there are “only” 1080 atoms in 
the entire universe. Recalling the estimate of the total computational capacity 
of the universe since its creation of 10120 operations the required computa-
tional intelligence need to win at these and other complex games has become 
an area of intense scientific interest, particularly since many games can be 
generalized to problems of practical interest, which, as argued here, includes 
solving the problem of cancer. 

4.2  Computing Game Solutions
Computational algorithms that permit AI agents to successfully play the most 
complex games have seen rapid improvement in the last decade. New algo-
rithms can compete against and even predictably beat the best human players 
in checkers, backgammon, chess and go (65-68). Notably, these games have 
informational symmetry, that is, each player has perfect and identical knowl-
edge about the state of play. This greatly simplifies the play and correspond-
ingly, the relative ease in the creation of AI algorithms for machine players. 
In contrast, many card games employ asymmetric information as an attractive 
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aspect of games like poker, bridge and gin rummy. This greatly increases the 
complexity of the state space and decision tree. The individual agents have 
perfect information of their own hand, the public cards on the table, and often 
the discarded cards (i.e., the discarded strategies), but not of the other players’ 
private cards. As a result of this feature, these games offer various ways to 
mislead an opponent, that is, to use deception. In poker, the main form of 
deception is bluffing, addressed in further detail below. The power of decep-
tion is substantial, to the extent that in bridge it is disallowed, even as a dis-
card hesitation to mislead an opponent. 

In just the past 4 years there have been exceedingly important develop-
ments in solving heads-up limit and no-limit Texas hold’em poker (69, 70). 
The solutions are not explicit, for that would require overcoming the insur-
mountable limitations of computing the vast state space of poker games. 
Rather, the algorithms employ approximations that are now able to beat the 
best human players, who themselves are, as well, unable to explicitly com-
pute all the decision points of a game. Importantly, the recent computational 
advances are only for the 2-player limit and no-limit Texas-hold’em; multi-
player poker games have even greater complexity (71). Normal game play is 
based on the imperfect information each player has and efforts to infer an 
opponent’s private cards based on the opponent’s actions, past experience 
with the opponent, and subjective signs (tells). This level of recursive reason-
ing evolves throughout the gameplay on the part of the individual players as 
they strive to develop less imperfect information and process the available 
information to win the game. 

A core aspect of the recent DeepStack algorithm is the use of counterfac-
tual regret minimization (CFR) in order to converge on game solutions that 
minimize the regret or cost of making game decisions that later prove to be 
suboptimal (72, 73). Simulated play uses regrets of past game choices for 
future game play. Regret matching occurs at the Nash equilibrium in equi-
librium games. Minimizing the expected regret in a game is the strategy 
used in the recent poker algorithms. CFR is a general approach and can, for 
example, be used in the game of rock-paper-scissors and many other games 
(73). The DeepStack strategy carries out a “deterministic computation that 
produces a probability distribution over the available actions” (69). It does 
not compute to the end of the game for each play, rather it uses a limited 
look-ahead strategy using the public card information. This results in a 
reduction from 10160 to 1017 in the number of decision points, comparable 
to that of other solved games (vide supra). The strategy uses the deep learn-
ing approach for perfect information games, supplemented by constant 
resolving the look-ahead trees and maintaining assessment of the oppo-
nent’s counterfactual regrets. The current analysis concerns games with dis-
crete moves, such as playing a card or moving a chess piece, whereas in 
natural process and economics, the state variables may be continuous and 
so may the players’ choices, as well (74). 
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Importantly, the DeepStack strategy incorporates bluffing plays. At the 
earliest beginnings of game theory von Neumann pointed out the reasoning 
difficulties in games with imperfect information: “Real life is not like that. 
Real life consists of bluffing, of little tactics of deception, of asking yourself 
what is the other man going to think I mean to do. And that is what games are 
about in my theory.” (75) In its deep learning algorithm DeepStack incorpo-
rates experience from bluffing plays, especially those at inopportune times, to 
exploit a player’s weakness. Without this feature, DeepStack would be less 
able to beat the best human players who can judiciously bluff at appropriate 
times. Other forms of bluffing also exist in nature (vide infra).

The recent experience with complex games and the features of AI needed 
to out-compute the most difficult games is relevant to cancer’s ability to com-
pute it own survival and spread in changing and unpredictable environments, 
whether from host-derived changes, cancer-engineered changes or environ-
mental changes from externally applied treatments. What game is cancer 
playing and what is the state space complexity and decision tree depth? Can 
new computational strategies and algorithms for known board and card games 
be applied to cancer and if so, which games are most relevant? Are the 
approximate complex game solutions good enough for cancer solutions, as 
they are for human players? Recent results extend the two-player case to that 
of multi-player poker; in this case, the Nash equilibrium is non-computable, 
requiring simulations to estimate the multi-player outcomes (71). Since can-
cer is a multi-player system, simulations would also be required in AI strate-
gies for cancer lethality. How does the cancer e-machine(s) of intrinsic 
computation relate to the most effective AI game strategies and algorithms? 
What is the computational capacity and memory storage of a cancer cell or 
cancer network? Does cancer bluff or use other forms of deception? Can CFR 
be used in intelligent treatment strategies to minimize the oncologist’s regret 
in cancer treatment (minimize ineffective treatment)? And finally, is cancer’s 
game a P or NP-hard problem (see Supplement 2)? In human cognition and 
decision making, computational complexity theory (CCT) address the limits 
of human computation for solutions to P and NP problems encountered in 
real-life situations, from driving a taxi in a large city to efficiently shopping 
in a grocery store to inviting friends to a party so that a minimum number will 
know each other (the clique problem) (145, 159,160, 161) (Figure 2).

5  Cancer Games 

The concept of cancer treatment as a game between the oncologist and the 
cancer itself has been intensively examined by many investigators, includ-
ing mathematicians, physicists and oncologists (76-81) (82-84). Prior to 
treatment, cancer can also be viewed as playing a computational game with 
the host as it evades host immune and other defenses, plots its escape from 
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low oxygen environments, and figures out the optimal balance of growth 
and movement, among many of the decisions cancer makes to survive. Can-
cer’s intelligence can then lead to the formation of societies of collaborat-
ing clonal phenotypic subtypes that display synergistic cooperation, 
together with “free rider” or cheater clones typical of human societies (85). 
Similar features are also observed in bacterial populations (10). Several 
examples in human and experimental cancers of intelligence-based societal 
features of cancer cell resistance, persistence and drug tolerance are given 
by Tabassum and Polyak (85).

This cancer-game paradigm has led to new therapeutic approaches using 
adaptive therapies, including those based on evolutionary game theory (79, 
81, 86). Adaptive therapies evolve following the real-time therapeutic 
response and other information about the tumor’s status; they contrast with 
the conventional treatment approach using maximally tolerable drug and 

Figure 2
Decision as Computation
Optimal shopping in a grocery store in order to maximize the purchase utility for a given budget is an 
NP-hard problem. For only 100 different goods the combinatorial number of choices (configurations) 
is approximately 1030; for 1000 goods, 10301 – both intractable computations for the world’s fastest 
computers. In practice, approximate solutions using heuristics have proven adequate for basic human 
nutritional needs given constraints of budget, time to shop, home storage for perishable items, and 
many other practical factors. These decisions still require allocation of mental resources of energy, 
thought, and memory – in short, the resources for any computation. In cancer survival decisions, the 
cancer is “shopping” in its store of thousands of survival mechanisms to combat and escape from low 
pH, inadequate O2, immune attack, or the oncologists’ lethal interventions in order to grow, move or 
both. This computation also requires the cancer’s e-machine to optimally allocate resources for an 
adequate solution to a similar NP-hard problem. (Reprinted from (145).
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radiation treatments in a progressively dose escalating regime. The knowl-
edge gained from modeling and preclinical studies is now leading to clinical 
trials, including those in which the goal is “resistance management” for cases 
where a cure is not possible (81). 

A recent highly instructive example is in prostate cancer where the 
assumed state space is 3: cancer cells dependent on circulating testosterone, 
T+; cells dependent on testosterone produced by the cancer cells themselves, 
Tp; and androgen-independent cells, T– (80). For the first two states effective 
treatments exist, but prostate cancer eventually progress to the androgen-
independent state, for which there is no curative treatment. Even for a small 
state space created from 3 variables, the mathematical formulation can be 
formidable, but tractable. The investigators demonstrate that there is an opti-
mal treatment scheme using abiraterone to block androgen synthesis in the 
self-synthesizing clone, which, in turn, reduces the emergence of the lethal 
androgen-independent clone. In a pilot study of 11 prostate cancer patients 
evaluated over 27 months the use of adaptive therapy resulted in a stable 
oscillating tumor burden with a reduction in the cumulative drug require-
ments. Additional studies in prostate and other cancers will determine the 
extent to which this approach will provide lasting patient benefit. The above 
approach treats the 3 parameters as continuous, but the formulation can 
always be discretized for comparison to the board and card games referenced 
above (87).

For some cancers, the game description may be reduced to a small param-
eter set, as in the above example for prostate cancer with 3 parameters, but for 
most cancers this will only be a rough approximation of the full game cancer 
plays. Single driver mutation cancers would be an exception. To the oncolo-
gist, the majority of cancer’s computational framework (its e-machine) is hid-
den. The analogy with no-limit Texas hold’em poker is a situation where 
cancer sees all the public cards, but the oncologist sees only one – it would be 
difficult or impossible for the oncologist to win since creating a winning hand 
would be largely guesswork without full knowledge of the public cards. 
Another analogy would be a multi-player poker game in which there are 2 or 
more players representing cancer and a single oncologist – the cancer team 
only has to have one member win (i.e., cancer only needs one effective sur-
vival mechanism). Even if the oncologist has full knowledge of the public 
cards it would difficult to win against multiple players, especially if the oppo-
nents share their cards and strategies, and even exchange cards, as in genetic 
recombination. 

Game theory oncologists increasingly realize that more of cancers’ cards 
need to be made public, that is, through repetitive measurement of circulating 
tumor cells, circulating DNA, and non invasive biochemical imaging, such as 
with PET (79, 80). Ultrasound stimulated release of intra-tumoral factors is 
one approach to uncovering cancers’ hidden cards (88). The continued use of 
conventional endpoints of tumor size and burden from anatomic imaging 
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often plays a poor game that consists of evaluating the game’s end to see that 
one has lost. The oncologist needs to be playing the game actively in real 
time, with technologies to see the result of each play, always with goal of 
maximizing the cancer’s regret after each therapy move. FDG metabolic PET 
is currently used in the early stage of treatment to assess the initial tumor 
response (a decrease in metabolism) as a predictor of the response or nonre-
sponse of treatment; this is an example of “real-time” tumor response moni-
toring during, not at the end of the treatment game (89-92). A real-time 
e-machine representation of the evolving cancer state using imaging, blood 
markers and other inputs would provide the oncologist with the needed infor-
mation. Once the minimal e-machine representation is identified it can be 
more efficiently targeted for destruction. Just as in the DeepStack poker algo-
rithms where games are simulated to minimize counterfactual regret, cancer 
“foreknowledge” will be important in order to permit real time treatment 
modification around the cancer’s best response curve (81). Finally, the cancer 
game must be played with the view of the cancer player as a large system 
heterogeneous cells that communicate across a wide network encompassing 
the primary tumor cells, the metastatic sites and the tumor-associated cells 
(93-95).

5.1  Cancer’s Deception
Among the properties of intelligence listed above, deception operates at the 
polar opposite to the more common altruistic or cooperative aspects of intel-
ligence, but it can serve the same purpose of advancing the goals of the agent. 
Among the forms of deception are lies, exaggerations and understatements. 
The detection of deception is a component in the relationship between the 
deceivers’ and message receivers’ actions, where the receiver attempts to 
establish the truth of information. Bluffing a type of lie where the agent mis-
represents and exaggerates its own information state and exhibits behavior or 
signaling consistent with the misrepresented state. The decision of an agent 
to bluff is dependent on its ability to learn, process information and compute 
the best times to bluff, for bluffing must be unpredictable (96). In poker bluff-
ing is an essential component and has been incorporated into the DeepStack 
algorithm (vide supra). Less frequently, reverse bluffing may be employed 
when an agent has an advantage in temporarily understating the value of the 
cards it holds (97, 98). In biological systems, signaling, conflict and decep-
tion operate at the molecular sender-receiver information level (99); biomo-
lecular signaling processes are then manifest at the microbe, cell and cellular 
network level for goal-directed behavior. 

Deception is a constant feature of nature and an essential one for survival. 
An agent that accurately signals all its private information would be a “sitting 
duck”, soon to be extinct (100). One instructive example is that seen in ground 
nesting birds, such as the piping plover, that lead a predator from the nest by 
fluttering away on the ground while feigning an injured wing, thus falsely 
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signaling an easy catch. After luring the predator far enough away, the bird 
returns to the nest. This behavior is sophisticated and has been described as 
dependent on a belief about an expectation: a hypothesis about the rationality 
of the predator; and a plan based on the hypothesis – in short, a computation-
ally intelligent and clever move (100). The counterpart, honest signaling, is 
also important in nature (101-104). One example is that of gazelle stotting 
where the strong, young gazelles jump high and close to a predator as a show 
of true strength in order to signal that there are easier prey in the herd . This 
behavior is difficult to fake, but comes at an energetic cost—honest signaling 
is costly. In human behavior, altruism is a common form of honest signaling, 
that is also difficult to fake, but comes with a cost. Philanthropy is common 
type of altruism that is very costly, but with substantial benefits in society and 
its survival (103). Altruism in nature may help find an optimal mate and 
secure important food and other resources. In bacteria colonies, cooperators 
and cheaters have been identified, demonstrating the broad applicability of 
these concepts in nature (10, 105, 106).

Cancer dormancy and reemergence in primary tumor and disseminated 
cells, prior to and after therapy, is a foundational aspect of cancer that limits 
treatment effectiveness due to the greater resistance of dormant cells (77, 
107-111). Similar features are observed in bacteria, fungi and higher organ-
isms (112-114). There are a number of molecular mechanisms that mediate 
cell dormancy, including extracellular ERK kinase (ERK 1/2); p38 phosphor-
ylation leading to activation of the unfolded protein response; ATF6/Rheb/
mTOR signaling; and several dormancy-related transcription factors (115). 
Immune-mediated dormancy and dormancy reversal, and the influence of the 
micro-environment are also important areas of investigation (115). 

Here, however, the focus is not on the detailed mechanisms of dormancy 
induction, but rather on the initial decision making of the cell to initiate dor-
mancy, that is, how does the agent’s e-machine intrinsically compute the 
decision to initiate dormancy. The computation of dormancy and active state 
decisions in predator-prey relationships has recently been investigated, show-
ing non-chaos-mediated cascades of mixed-mode oscillations are observed in 
the prey-predator model with dormancy prior to the onset of chaos typically 
observed in predator-prey systems; the introduction of dormancy stabilizes 
the system and avoids extinction (promotes survival) (116). Dormancy has 
also been evaluated from a game theoretic viewpoint as a critical system that 
follows power law behavior (77). These early analyses need further study and 
extension to dormancy decisions intrinsically computed by the cancer 
e-machine. Computation on Boolean networks may offer a partial answer 
(vide infra). 

Dormancy can be viewed as a type of deception since to the outside 
observer, for example, the oncologist, the cancer temporarily stops growing 
and may even shrink as a subpopulation of persistent cells remains. The 
oncologist who does not consider deception and bluffing on the part of the 
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cancer would likely stop therapy, unaware of the more lethal persister cells 
that will lie in wait for better external growth conditions. In poker, the bluffer 
has a weak hand and over-represents it to the other players (the environment). 
In a reverse bluff, the player has a strong hand, but represents it as weak in 
order to increase the betting rounds, the pot size and the reverse bluffer’s 
eventual winnings. Cancer most often has the stronger hand, at least early in 
treatment, and therefore a reverse bluff would be the more preferred form of 
deception. A normal cancer bluff could occur in a phase of rapid growth 
under conditions where cellular constituents are inadequate, for example if 
the unfolded protein response (UPR) system is not adequately upregulated or 
anabolic pathway enzymes for macromolecule synthesis are too low to per-
mit enhanced fatty acid synthesis. A rapid growth increase under these condi-
tions would be a form of bluff, to which the oncologist would respond with a 
new dose escalated therapy, giving the cancer time to develop a new survival 
strategy. To the extent that deception strategies are coded in the cancer 
e-machine (or different e-machines in different cancers), the new computa-
tional algorithms for poker and other games with asymmetric information 
would offer a novel strategy for out-computing cancer. First, though, the lan-
guage of cancer must be known, that it, the molecular and cellular mecha-
nisms used by cancer to acquire, process and store (remember) information.

6 T he Language of Cancer 

Information transfer, processing and storage requires a language. Language is 
a symbolic and syntactical system that permits communication for goal-ori-
ented and other behaviors. It can be a human language, a computer language 
or in biology varied types of intra- and inter-cellular signal transmission and 
transduction mechanisms. Since all information has a physical instantiation 
(117, 118), information generation and transmission relies on physical encod-
ing, whether the written symbols in human language, the state of a transistor 
in computing, or DNA and signaling molecules in biology. Language-based 
information transfer and storage requires energy, as determined by the Lan-
dauer limit to erase one bit of information: kTln2. Information is the degree 
of surprise compared to that of a random signal stream and is quantified by 
the Shannon entropy. The Shannon entropy is the number of language bits 
required to encode a string of N symbols, each with a probability of pi and is 
given by H = –∑ pilogpi (119); if all the probabilities, pi, are equal, H = –
logN. The cell’s e-machine is its physical information storage and processing 
system (vide supra). Here, though, the language of cancer is addressed since 
knowledge of the language is a necessary, but not sufficient, prerequisite for 
the oncologist to effectively ablate or stabilize cancer.

The oncologist’s access to cancer’s language has greatly improved in the 
last decade. Language features including signaling molecules for quorum 
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sensing; circulating exosomes and free DNA; circulating tumor cells; pre-
metastatic niche signaling; short and long non-coding RNA; hedgehog and 
notch signaling; zinc signaling and many others are increasingly well under-
stood. The oncologist’s access to the information is, however, severely lim-
ited. Non invasive imaging and liquid biopsy technologies are, however, 
beginning to partially address the informational needs of the oncologist. Even 
with greatly expanded raw information the oncologist will still be hard 
pressed to process and use all the information without better knowledge of 
cancer’s computational approach to countering his or her therapeutic plays – 
that is, knowledge of cancer’s e-machine.

Specifically, what game is cancer playing at any given time? Human 
language has been described as a “language game” (Sprachspiel) by Lud-
wig Wittgenstein (120). That is, many different games can be played using 
human language since it is not a purely logical ideal language without 
ambiguity. It can be vague, misleading and even contradictory. As with a 
deck of 52 cards, many different games can be played and players must 
know the rules. An observer of an unknown game of even moderate com-
plexity would find it difficult or impossible infer the complete rules of the 
game needed to play and win. Cancer has many survival mechanism cards 
it can assemble into a winning hand. The precise rules are unknown to the 
oncologist, who in the prevailing cancer treatment regime often holds a 
weak hand. Improved knowledge and access to cancer’s signaling language 
is essential, as is the companion need to better understand the game cancer 
is playing in each patient – that is, each patient’s individual cancer 
e-machine. 

The computational description of this problem is described well by 
Crutchfield 25 years ago (Crutchfield 1994):

One of the main questions in computation theory is how difficult it is 
to “recognize” a language - that is, to classify any given string as to 
whether or not it is a member of the set. “Difficulty” is made con-
crete by associating with a language different types of machines, or 
automata, that can perform the classification task. The automata 
themselves are distinguished by how they utilize various resources, 
such as memory or logic operations or even the available time, to 
complete the classification task. The amount and type of these 
resources determine the “complexity” of a language and form the 
basis of a computational hierarchy - a road map that delineates suc-
cessively more “powerful” recognition mechanisms. Particular dis-
crete computation problems often reduce to analyzing the descriptive 
capability of an automaton, or of a class of like-structured autom-
ata, in terms of the languages it can recognize. This duality, between 
languages as sets and automata as functions, which recognize sets, 
runs throughout computation theory. 
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7 O ut-computing Cancer 

What is the computational capacity of the cancer cell or network playing the 
cancer game? In complex games humans play the decision tree and state 
space sizes have been discussed above. No-limit Texas hold’em has 10160 

possible decision points, which can be simplified to 1017 in a computational 
algorithm that can beat the best human players. How does that compare to a 
cancer cell or better conceived, a cancer cell network and how can the com-
putational limit of cancer be itself computed? This limit will determine the 
oncologist’s requirements to out-compute cancer. 

7.1  Boolean Networks
Representation of biological computational networks as Boolean networks 
(BN) has been extensively investigated in recent years (33, 121-128). BNs 
have been demonstrated to accurately represent biological behavior, to pre-
dict functional evolution and to be computationally tractable for modeling 
and simulations. In contrast, depiction of biological networks by concentra-
tions, enzyme and receptor affinities, and the corresponding partial differen-
tial equations of kinetic modeling leads to greatly increased computational 
challenges that rapidly outstrip available computer resources (129). BNs 
were first intensively investigated by Kaufmann (7, 130). These early investi-
gations characterized the BN structures that lead to ordered, chaotic and 
intermediate dynamic behaviors and laid the foundation for extension to bio-
logical cell networks at play in cancer.

A BN is a connected network of nodes (Figure 3). A node can be a protein, 
enzyme, transcription factor or any cellular constituent whose activity is 
determined by its connection to and regulation by other nodes in the network. 
In a typical BN a node can take one of two values: ON (1) or OFF (0). For 
example, a gene is expressed or not expressed or a molecule’s concentration 
is above or below a certain threshold. Typically, the connections between 
nodes can be either activations or inhibitions, or in logic operator terms: AND 
or NOT, respectively. From a starting configuration of node states and the 
interconnection rules the future network evolution can be computed in dis-
crete time steps according to its Boolean function, either to a ordered (e.g., 
cyclic), chaotic or critical state attractor (131, 132). This is a type of self or 
intrinsic computation, in which critical states have the greatest computational 
capacity (51).

BNs grow rapidly in complexity and computational potential as the num-
ber of nodes (N) and connections per node (k) increases, comparable to the 
complexity of card and board games. The state space of a BN is 2N , the 
number of Boolean functions 22k

, and the number of possible networks is

22k
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  (121). For k=2, N=10, the state space, Boolean functions, network 
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Figure 3
Boolean Networks.
A
A three-node Boolean network with stimulatory and inhibitory pathways. The truth table shows 
the transitions from the 8 possible initial conditions. The state transition graph shows how the 
states sequentially transition from the starting configurations. From Steggles, et al (146)
B
A metastasis BN showing inhibitions (red) and activations (blue) . From (147, 148)

number are 1,024, 16, and 5.8 x 1030, respectively. For k=2, N=10, a reasonable 
network configuration for typical cellular functions, 1.0 x 106, 64, and 1.5 x 
10160, respectively. Clearly, the BN regime can support a very large functional-
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ity and computational space, comparable to that required in the AI solutions to 
card and board games. In these examples, the mean connectivity of k=2 is used 
since it tends to bring a network close to a critical, highly computational state 
poised between order and chaos (121, 131).

7.2  Cancer Boolean Networks 
Understanding the role of BNs network analysis in cancer requires under-
standing control; nodal sensitivity; canalizing functions; synchronous versus 
asynchronous BN updating; synthetic BNs; BN inference and relation to the 
e-machine; BN information storage, transfer and excess entropy; BN self-
perception (self-awareness); and BN control of quiescence. These topics are 
addressed below.

BNs have been investigated in several biological entities, including 
bacteria, yeasts, the single cell slime mold and the mammalian cell cycle 
(28, 40, 133, 134). Functional understanding of gene regulatory networks 
(GRN) has seen substantial progress recently by the application of BNs 
(121, 125, 135-138). A major aspect has been in the understanding of 
GRN control, optimization of control tasks, and stability; often one BN 
may control another (121). In general, BN control is an NP-complete 
problem and therefore, accurate solutions are limited to small networks 
unless constrained solutions can be identified (121, 139, 140). As an 
example, control of T helper cell differentiation toward the 3 stable cell 
states demonstrates how new algorithms can identify key control features 
in 23-node BN (121). Additional aspects of cancer Boolean networks are 
addressed in Supplement 3.

8  Conclusion

A novel approach to the problem of cancer is presented that treats cancer as a 
computationally intelligent entity. This approach brings together knowledge 
from diverse territories including theories of intelligence; information; can-
cer hallmarks; the limits of computation; intrinsic computation; complex 
games and game theory; Boolean networks and self-aware systems. The can-
cer intelligence thesis delineates the limits of current cancer research and 
treatment regimes, and demonstrates how cancer science can evolve and 
improve as the result of new paradigmatic thinking. From the standpoint of 
philosophy of science, current cancer theory is profoundly underdetermined 
as demonstrated by the woefully inadequate treatments for most cancers. 
This cancer construct suggests an altogether new approach to a future 
advanced personalized cancer medicine where knowledge of cancer’s com-
putational machine-derived strategies coupled with new human game play-
based AI support for the oncologist can lead to a much more effective game 
against cancer. 
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Several signposts for future cancer investigation and application to patient 
care augment the analysis of the above-referenced topics. These include:

•• Examine and apply the e-machine concept to cancer cells and extended can-
cer networks. Since the e-machine, by definition, is the most efficient inter-
nal causal description of a system, it could, in turn, be employed to efficiently 
disrupt cancer survival mechanisms with the minimal and safest interven-
tions. This will require computational resources across the cancer types and 
subtypes, and empirical input information beyond that currently available.

•• Expand the availability and use of biomarkers in the e-machine model of 
cancer’s intrinsic computation. Cancer biomarker research continues to 
advance in the context of personalized medicine, but the application of the 
biomarker information continues to reside in the reductionist regime 
where biomarker information simply points to a specific target for inter-
vention. This misses how the biomarker informs the internal structure of 
cancer’s self-computation and thus also misses an opportunity to strike at 
cancer’s brain, not just one of its many limbs.

•• Improve estimates of cancer’s computational capacity. This will determine the 
external computation needed to fully integrate all of an individual cancer’s 
Shannon entropy and entropy rate in order to generate lethal strategies. Cap-
ture the entire computational scope of cancer, including that for DNA, chro-
matin, epigenetics, and metabolic, gene regulatory and hormonal networks.

•• Develop technologies to apply advanced game-solving AI algorithms 
(e.g., DeepStack for poker) to cancer computation and counter-computa-
tion, including the use of counterfactual regret minimization and the incor-
poration of deception strategies. 

•• Investigate the extent to which cancer’s computation is self-aware. Just as 
self-aware computation is a cornerstone of current AI, it is likely also a 
feature of intrinsic computation. 

•• Examine the clock features and intrinsic computation of dormant or quies-
cent cancer cells. While quiescent cells appear completely inactive from 
the standpoint of growth and movement, recent analysis indicates that they 
self-compute their quiescence in real time and their eventual emergence 
from the dormant state. External control of quiescence would necessarily 
lead to new therapeutic measures.

•• Continue to improve understanding of Boolean network-based intrinsic 
cancer computation and control. Determine the degree to which BN-based 
computation can be modified, either by targeted and efficient disruption of 
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BN control or by insertion of artificial BN’s. Understand the symmetries 
in BNs and how broken symmetries alter cellular intrinsic computation 
and attack vulnerability (141). Correspondingly, network-based comput-
ing may offer more efficient solutions to complex problems, including 
NP-complete problems, than possible with conventional or DNA-based 
computation (32), thus permitting faster solutions of individual cancer 
networks and computation of lethal interventions.

•• Examine how information is stored in cancer cell networks, including 
internally and in the microenvironment. Microenvironment targeting is a 
current area of cancer research, but the degree to which the targeting dis-
rupts memory, logical operations or both has yet to be investigated. Fur-
ther examine the extent to which cancer memory can be used to compute 
or pre-compute actions to counter the oncologist’s therapy moves. Can 
cancer compute a future action and store the information prior to an exter-
nal change in conditions, i.e., prior to the oncologist’s future moves?

•• Ultimately, individual genetically and phenotypically diverse cancer cells; 
the many types of microenvironment cells; the co-opted immune system; 
and the often countless metastatic sites create a information storage, trans-
fer and processing network that is analogous to a society, like intelligent 
human societies, with bottom-up and top-down causal effects and central 
monitoring components that control the system at large (142). Artificial 
society research is relevant in this regard, including the theory showing 
that intelligent societies are not computable by a deterministic Turing 
machine, thus placing limits on the oncologist’s ability, even together with 
AI, to out-compute cancer (143, 144). Where does cancer lie on the P to 
NP-hard computational spectrum? That is the most fundamental question, 
as it is for all computation.

The concepts summarized in this article squarely juxtapose the current cancer 
paradigm and the conditions for progress to a foundational level of under-
standing cancer and its intelligence. This new knowledge would necessarily 
lead to the development of novel measures to disrupt or reverse the cancer 
process. The road will be long and broad, requiring many disciplines to seam-
lessly stream together. It cannot be bypassed. The stakes are too high
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Supplement 1

Biologic Competency and Cancer
Four levels of biologic competency have been described: Darwinian, Skin-
nerian, Popperian and Gregorian (100). Darwinian organisms start with hard-
wired competencies and then develop more or less random variations that are 
then tested against Nature – the winners are copied in larger numbers. Skin-
nerian competence adds judicious reinforcement and entropic pathways with 
an operant conditioning component, but still with no inkling of comprehen-
sion or internal review of possible decisions. 

Next come the Popperian creatures, as Dennett calls them, after the phi-
losopher Karl Popper, who is revered among scientists for his view of empir-
ical falsification as a foundational truth criterion in science. These creatures 
“extract information from the cruel world and keep it handy, so they can use 
it to pretest hypothetical behaviors offline, letting their hypotheses die in their 
stead”, as Popper put it. The judgment and decision making required in these 
organisms represents a significant elevation from the prior two and involves 
much more computation to track all the possible outcome scenarios. Last are 
the Gregorian creatures, named for the psychologist, Richard Gregory, who 
formulated the idea of “thinking tools” that in the entropic pathway theory 
help bootstrap the possible pathways analysis, ruling in or ruling out large 
pathway territories. These tools encompass things like arithmetic, democ-
racy, PET scanners, computers, maps and satellite imagery (100).

Cancer certainly has features of the Darwinian competency, its sine qua 
non. The ability of cancer to seek reinforcement by facile switching between 
oxidative, glycolytic, or amino acid metabolism or an optimal combination 
depending on the environmental conditions is an example of a Skinnerian 
competency. The intermediate Popperian realm is a compelling one for can-
cer operations where many complex factors are involved in decisions for the 
future to move or grow in place; to divide or wait in a quiescence state for 
optimal environmental conditions to prevail; or devise a plan to escape the 
effects of a lethal cancer drug. 

The Gregorian competency may seem too far for cancer even though, as 
will be further elaborated, cancer itself does compute, i.e., possesses its own 
biological non silicon-based computer. It has stored informational and spatial 
maps of its extended system of newly prepared provisional metastatic niches, 
sites of active metastases, coopted immune cells, and tumor stromal cells. 
Could it also be an example of computation self-awareness? A map tool does 
not have to be a physical folding map printed on paper, but could simply be 
the stored information. The dividing line between competency and intelli-
gence is not sharp, but the two latter competency domains are in accord with 
many of the previously described definitions of intelligence. 

What do we value as intelligence and in an intelligent system? Dennett 
examines this question by asking what’s desirable in an intelligent chess 
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playing computer: it keeps track of all the pieces; notices opportunities; rec-
ognizes and makes gambits; expects the opponent to make intelligent moves; 
values the pieces soundly; and looks out for traps (100). An addition to Den-
nett’s list is the ability to use deception and set traps. 

Dense signaling, for example quorum signaling and signaling to cells at 
metastatic sites, permits the cancer network to keep track (communicate 
with) of all its cellular constituents, including cancer and tumor-associated 
cells. Cancer notices opportunities for growth or movement in response to 
variable energy sources and their locations and it can even decide to adopt a 
quiescent state of neither growth nor movement in the face of inhospitable 
conditions (i.e., a reduced possibility space). 

The other features of game-playing intelligence raise additional questions 
for cancer. Can cancer make gambits in its game of survival as it first moves 
and grow to overcome the adverse host environment, sacrificing certain cell 
types as it advances the survival of the global system? Later in the cancer 
game, cancer’s opponent is the medical oncologist. Whether or not cancer 
“expects” and pre-computes intelligent moves by the oncologist, it certainly 
has a vast armamentarium of plays available and the computational intelli-
gence to make many different survival plays. Does cancer first learn from the 
experience of overcoming the body’s own defenses and later on, from the 
experience of external lethal drug moves to then expect and plan for the 
oncologist’s future moves? Theories of computational self-awareness may 
offer a partial answer (Supplement 2). 

Finally, does cancer have the capacity of deception to set traps or bluff 
when faced with the oncologist’s therapy moves? Is cancer bluffing (often 
times, a reverse bluff) when a tumor initially shrinks after therapy only to 
grow more virulently after therapy ceases? Is growth arrest simply the result 
of the lethal drug or a planned strategy to adopt a more resistant state, e.g., 
dormancy. Adaptive therapies seek to play a stronger game against cancer as 
they strategically dose, starting and stopping treatment with an idea to better 
outplay cancer (86, 149-151). Adaptive therapies have shown better outcomes 
in some cancers, but while cancer plays multidimensional chess, the oncolo-
gist currently moves on a flat surface following tumor volume and possibly a 
blood marker – a weak game, with a common and not unexpected poor out-
come.
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Supplement 2

Computation and Its Limits
At the most basic level, computation transforms an input into an output. A 
computation is information processing. This happens daily as we find an opti-
mal route on Google maps, send a rocket to Mars, play chess on a laptop, use 
Siri for voice recognition or in a myriad of other scientific or engineering 
aspects of daily living. The limit of computation also plays a key role in daily 
living: the intractable problem of factoring very large integer numbers, which 
serves an essential role in banking and other areas of information encryption; 
the difficulty and inaccuracy of forecasting the weather over short time peri-
ods; predicting the stock market and many others. 

A famous example of a difficult problem is that of the traveling sales-
man: the problem of determining the shortest route to visit a given number 
of cities only once and returning to the starting point. For N cities, the 
problem’s difficulty increases as N! or N-factorial, which can quickly out-
strip the computational capacity of the world’s most powerful computers. 
Importantly, there is no exact “shortcut” algorithm for the calculation as the 
number of cities increases; the length of each path must be individually 
computed for an exact answer. For only 35 cities, 35! » 1x1040. As the 
world’s most powerful computers approach a quintillion (1018) operations 
per second (OPS), the computation would still take about 3x1014 years: 
longer than the age of the universe (about 1010 years). Approximate heuris-
tic algorithms can provide estimations within 2-3% for up to a million cities 
(152, 153), which may be adequate for some practical problems of this 
type, including for accurate cancer solutions sufficient for treatment (vide 
infra). The traveling salesman permutation problem is related to others: 
computer wiring; wallpaper cutting; hole punching; job sequencing; and 
even the design of a dartboard (154).

What is the maximum computational potential of any device? An iPhone 6 
operates at about 3x109 OPS and the fastest mainframes are approaching 1018 
OPS. Quantum computers will increase the speeds by orders of magnitude. At 
the far extreme, one can ask what the computational limit is for the entire uni-
verse. This question was first addressed by Seth Lloyd (155-157). Briefly, the 
calculation views the universe (the visible universe) as divisible into the small-
est Planck lengths (from the Heisenberg uncertainty principle) of 10-34 cm. 
Each Planck length can then be treated as an on-off logic switch for computa-
tional purposes. The size (volume) of the visible universe gives the total num-
ber of 0-1 switches and the age of the universe gives the total number of 
operations that could have ever been performed: 10120 operations. Therefore, 
any computational problem that requires more that 10120 operations is not only 
intractable, but impossible. Boolean networks in cells or cellular networks with 
similar 0-1 or OFF-ON switches also permit computation (vide supra).
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Computation complexity can be divided into classes of computational 
time requirement as the size of the problem increases. Problems that increase 
in polynomial time, using a deterministic Turing machine, as a function of 
size are termed P. They require increased computational time, t, as the size 
(N) raised to some power, a: t~Na. Answers can also be checked in polyno-
mial time. Examples of P problems are determining whether a number is 
prime; calculating the greatest common divisor; determining whether a cell in 
Conway’s Game of Life is alive after N steps; and linear optimization prob-
lems that have application in economics and logistics (https://en.wikipedia.
org/wiki/P_versus_NP_problem) (158, 159). P complexity problems are not 
necessarily easy problems, but they are often tractable with available comput-
ing technologies.

NP-hard problems are in a fundamentally different complexity class. They 
require an exponential increase in the computational time as a function of the 
problem size: t~eN. NP-hard problems require a non-deterministic Turing 
machine, that is, they require an initial guess of the problem solution and then 
verification by a deterministic Turing machine approach. They require a quasi 
trial-and-error approach in which every possible solution must be tried and 
then verified as a solution. The traveling salesman problem is NP-hard. Other 
examples are factoring very large numbers; the clique problem; coloring 
problems and many others. Many computer games are also classified as NP-
hard, including Super Mario and related Nintendo games; Minesweeper; and 
Battleship. For a list of NP-hard problems see https://en.wikipedia.org/wiki/
List_of_NP-complete_problems. 

NP-hard problems are exceedingly difficult to solve, but can be much 
more easily verified in polynomial time, such as the factors of very large 
numbers, verifiable by multiplication. NP-complete problems are the 
class of NP-hard problems where a solution of one in P-time would solve 
all the remaining in the NP-complete class. A major research area of com-
putational science is to answer the question of whether P=NP, that is 
whether there are P solutions to NP-hard problems. In human cognition 
and decision making, computational complexity theory (CCT) address the 
limits of human computation for solutions to P and NP problems encoun-
tered in real-life situations, from driving a taxi in a large city to efficiently 
shopping in a grocery store to inviting friends to a party so that a mini-
mum number will know each other (the clique problem) (145, 159, 160, 
161) (Figure 2).

To summarize, the NP computational class includes all P problems and 
NP-complete problems. If P=NP, then NP, P, and NP-complete problems 
would all reduce to a single class. There could still be other NP-hard prob-
lems, such as the Turing machine halting problem, where NP≠P (158). Some 
P-complex problems can still outstrip current computational capacities, 
including the Advanced Encryption Standard (162).
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Computational Self-Awareness
As intelligent beings, humans possess self-awareness. Self-awareness is 
defined as: the capacity for introspection and the ability to recognize oneself 
as an individual separate from the environment and other individuals (Mer-
riam-Webster Dictionary). Humans also have awareness of their own self-
awareness, that is meta self-awareness. Since a salient feature of intelligence 
is computation, one can examine the extent to which other computational 
systems or processes demonstrate self-awareness. 

Computational self-awareness is indeed an active area of investigation in 
the computing sciences and in engineering. It is a prominent aspect of AI. A 
self-aware computing system can:

1. learn models capturing knowledge about themselves and their 
environment (such as their structure, design, state, possible actions, 
and runtime behavior) on an ongoing basis and
2. reason using the models (e.g., predict, analyze, consider, and 
plan) enabling them to act based on their knowledge and reasoning 
(e.g., explore, explain, report, suggest, self-adapt, or impact their 
environment)in accordance with higher-level goals, which may also 
be subject to change. (163)

In human-built computational systems, self-aware learning and reasoning is 
directed to the purpose for which the computing system is designed and con-
structed, either for the entity who built the system or for the end user. The 
learning process relates to the system processes, to the environment and to 
their relationship and interactions. 

As in the case of human intelligence and computation, other natural or 
organic computational processes, by the above definition, can be or become 
self-aware at a sufficient level of complexity. Indeed, it has been stated that 
self-awareness is necessary for a complex system to have adaptive behavior 
(164). Natural computing and self-awareness could take place at the level of 
an individual cell, a distributed cellular network or at the organism level. 
Self-awareness can also be decentralized as in ant colonies, flocks of birds, 
and schools of fish (163). These are self-organizing systems that can adapt to 
changing internal and external circumstances. 

In the e-machine regime, self-learning, self-awareness and reasoning 
could result in increased resources for memory storage of past histories, 
increased energy allocation to computational requirements, or a change in the 
computing architecture. In the case of cancer, it would be extremely valuable 
to have better information and understanding of how the cancer system (indi-
vidual cancer cells, tumor-associated cells, metastatic sites, etc.) monitors 
itself, computes decisions and then executes adaptions to survive in novel 
adverse environments, from that of outstripping its oxygen supply to exter-
nally applied toxic agents. Attacking the central internal monitoring system 
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of cancer – that is, at the heart of its computational intelligence or self-aware-
ness – could be effective in degrading or destroying cancer’s ability to adapt 
and hence its ability to survival. 

Cancer displays periods of rapid growth and times of quiescence when 
growth and movement ceases (77, 107-111). What are the computational fea-
tures of this behavior? Does computation continue in quiescence and what is 
computed when quiescent cells start to rapidly divide and eventually lead to 
death of the patient? What is the e-machine of a quiescent group of cancer 
cells and how can elucidation of the e-machine structure permit the oncolo-
gist to maintain the quiescent state and prevent active cellular growth? This 
dimension of the problem is related to “off line learning”, that is, learning 
conducted by an information processing system using simulation analysis of 
possible future events (163, 165, 166). The new knowledge from simulation 
and internal modeling can be stored and subsequently used for planning the 
response to actual future events. This is the mode of the Popperian intelli-
gence (vide supra). Improved understanding of computational self-awareness 
in cancer could help the oncologist play a better game against cancer. In 
short, can cancer be out-computed?
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Supplement 3

Boolean Networks in Cancer Computation
In cancer Boolean networks, the goal is to understand how certain nodes are 
maintained in the ON state and others in the OFF state. For example, BN 
analysis of castrate-resistant prostate cancer pathways identified the key con-
trolling nodes and connections in maintaining the treatment resistant state 
and correspondingly, the minimal target perturbations that could disrupt the 
cancer state and lead to treatment responsiveness (167). Efficient detection of 
nodes in BNs that are sensitive to functional perturbations is a complex theo-
retical task that is under active investigation (129). BN analysis has permitted 
detection of the key network components initiating quiescence, apoptosis and 
proliferation in a cancer network of 96 nodes and 249 connections or edges 
(127). Thirty-two million initial micro environmental states were shown to 
flow into 36 fixed states and 26 limit cycles. Network control sensitivity to 
nodal mutations was also measured. Altered environmental conditions of 
nutrient and oxygen supply could then be evaluated and the outcome follow-
ing different therapeutic interventions could be predicted.

A related BN problem is the detection of canalizing functions, that is the 
critical nodes and connections that drive a network to a desired state indepen-
dently of all the other nodal states, and how the canalizing functions can be 
efficiently identified (168-172). This concept is critical in cancer since the 
oncologist desires to therapeutically target cancer in an efficient manner, 
avoiding targets that play a minor role in maintaining the cancer network. As 
in the example of no-limit Texas hold’em poker, reduction of the problem 
size is highly advantageous in finding winning solutions. Automatic screen-
ing for network perturbations that result in long-term user-specified func-
tional changes is another area of investigation (173). Rapid canalizing 
function identification as applied to prevention of the immune response after 
DNA damage in cancer is one example of this approach (173, 174).

Another important aspect of dynamic BNs is whether the network is 
updated synchronously or asynchronously in time (175), that is, from a start-
ing configuration and a single nodal perturbation, do the connected nodes 
update asynchronously in a series or do all nodes update synchronously (the 
more realistic in vivo situation)? This has been investigated in a bladder car-
cinogenesis network to identify therapeutic targets (175). A similar approach 
has been used in colon cancer (176). Together, these recent theoretical devel-
opments and results in cancer models are beginning to identify the key com-
putational features of cancer and how they can be disrupted or even reversed 
(177-179). The idea of transfecting new synthetic BN control circuits in to 
cancer cell networks is especially intriguing (36, 180, 181).

A major challenge is inferring a BN from indirect and incomplete empiri-
cal measurements, particularly when some measurements may be correlated 
and noisy. New approaches are advancing solutions to the BN inference prob-
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lem, as exemplified by the Partially-Observed Boolean Dynamical System 
(POBDS) model (135). The key is progressive pruning of the hypothesis tree 
space – similar to the case of poker previously addressed – in order to keep 
the solution space tractable. BN inference is directly analogous to the prob-
lem of determining the system e-machine of intrinsic computation, if not 
identical when the e-machine is depicted as a BN. Yet, e-machine concepts of 
excess entropy and statistical complexity have been inadequately addressed 
for the cellular BN regime, thus limiting elucidation of the causal structure in 
biological networks. A recent exception in the BN regime uses the concept of 
integrated information to identify macro level network structures possessing 
emergent features of control beyond that of the composite microstructures 
(182). The identification of non-reducible control features of a cancer net-
work could be exceedingly useful for disruptive targeting by the oncologist. 
Bringing together and reconciling the BN “black box” and e-machine 
approaches is an important future goal for understanding cancer and destroy-
ing its ability to self-compute its future. In this regard, the theory cascading 
failure avoidance within large networks (183, 184) could be employed in 
order to promote, rather than prevent, cascading failures in cancer. In cancer, 
the network solutions are typically the inverse of the more common goals of 
retaining and strengthening biological networks. Since cancer can be viewed 
as a phase transition from a critical control state (185), reversing the cancer 
phase transition, possibly by transfection of artificial BNs circuits, is an excit-
ing concept. 

Information transfer and modification within the network is another 
important aspect of biologic systems and a foundational component of intrin-
sic computation (51, 186-188). Information storage (system memory) dic-
tates responses to novel environmental conditions and determines the cell’s 
future based on its past (51, 134). Excess entropy is the total amount of infor-
mation from that past that can be used to predict the future (186) (55) (187). 
A cell can store information in its neighbors and even in its environment for 
later retrieval and processing (186). Systems at criticality have the greatest 
capacity for information storage and information flow (51, 189), thus under-
standing the basis of cancer’s criticality is a goal for disruption. 

Self-perception of an agent’s influence over its environment is another 
feature of intrinsic computation relevant to cancer, as it both reacts to its envi-
ronment and modifies its microenvironment and its distant environment (e.g., 
the metastatic niche) to advance its survival (184, 190). Information storage 
and information processing (modification) are central; cancer cells may learn 
and remember how to fight the oncologist’s lethal measures from their very 
early experiences of developing measures to survive in low oxygen, low pH 
and nutrient-starved environments. Cell memory of DNA damage and 
hypoxia has been measured cell preparations and been shown to determine 
future environmental responses (36). Additional examples of cell memory 
circuits are given in Purcell and Lu (36), including the integration of memory 
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and logical information processing. Disrupting cancer memory circuits could 
be as therapeutically useful as interference with cancer’s intrinsic computa-
tion and information processing. 

Finally, cell quiescence or dormancy appears to also manifest a computa-
tional state; lack of division or movement does not imply complete inactivity. 
Since quiescent cells sequestered in specialized niches commonly and unpre-
dictably begin to divide to levels lethal for the host, it is important to under-
stand how to preserve the quiescent state or to carefully reverse quiescence in 
order to increase susceptibility to chemotherapeutic drugs. Quiescent cells, 
including hair follicles, appear to have a running clock and the ability to com-
pute emergence from the quiescent state (133, 191-193). Improved under-
standing computational quiescence would have a profound influence on 
cancer treatment, including for prostate cancer where the emergence of qui-
escent cancer cells in bone is the major cause of death.


