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Schizophrenia is one of the most common mental disorders, however it
is difficult to detect and can remain undiagnosed for years. It is believed
that information if a patient is ill can be extracted from EEG signals
recorded using electrodes located at the patient scalp. In the paper we
postulate that a network of chemical oscillators can process recorded
signals and help to diagnose a patient. In order to verify our approach
we investigated the network functionality on a small dataset of EEG
signals recorded from 45 ill and 39 healthy patients. We optimized a
network formed by just six interacting oscillators using an evolutionary
algorithm and obtained over 82% accuracy of schizophrenia detection
on the training dataset.
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work, Oregonator model, genetic optimization

1 INTRODUCTION

The semiconductor technology has dominated modern information process-
ing. Its success is the consequence of highly efficient realization of semicon-
ductor logic gates characterized by a long time of error-free operation. The
gates can be assembled together making more complex information process-
ing devices. The technology perfectly matches the bottom-up design strat-
egy of information processing systems [1]. However, to use the bottom-up

∗ Contact author: E-mail: abose@ichf.edu.pl

1



2 ASHMITA BOSE AND JERZY GORECKI

approach we should KNOW FIRST how to combine together simple compo-
nents to obtain the anticipated result.

There are many problems for which we can define the input variables and
specify the set of anticipated outputs, but we do not know the algorithm that
links the input with the output. For example, problems inspired by needs of
medical diagnostic belong to such class. The input information is collected
from a number of medical tests and on this basis we are expected to conclude
if the patient is healthy or ill. But in many medically oriented problems we
do not know the algorithm that produces the answer on the basis of the input
data. Our knowledge on the relationship between input and output is based on
previously accumulated examples. For such types of problem the top-down
design strategy seems to be more appropriate than the bottom-up one.

To illustrate the top-down design of a computing medium let us consider
a problem A for which we know the solution for a number of cases (records)
that contain the set of input values (p1, p2, ..., pn) and the corresponding
output q = A(p1, p2, ..., pn). Formally our knowledge on the algorithm A
can be regarded as the database DA containing records in a form of (n+1)
tuples (p1, p2, ..., pn, q), where the first n elements are predictors (for exam-
ple results of different medical tests) and the last element (q) is the discrete
data type. In medically oriented problems the value of q estimates the patient
state, like the NHS CORVID clinical frailty scale [2] or in the simplest case it
is just a single bit saying if a patient is ill or healthy. The computing medium
is supposed to return the correct data type if the predictor values are used as
the input. Therefore, if we are able to define a good classifier of DA using
a computing medium then we obtain an instant machine that executes the
algorithm A.

The basis assumption of this paper is that a classification problem can be
approximately solved by a network of interacting chemical oscillators (cf.
Figure 1). We assume that the network is formed of two types of oscilla-
tors [3–5]. There are input oscillators used to put the predictor values into the
network. The activity of an oscillator assigned as the input of the i-th predic-
tor is suppressed for time related to value of pi . There are also so called nor-
mal oscillators that are inhibited for a fixed time that is not related to the pre-
dictor value. These normal oscillators moderate interactions in the medium
and optimize them for a specific problem. We also assume that the output
information is coded in the number of oscillation cycles observed on a given
element of the network. As we show later, the choice of the output oscillator
results directly from the network optimization. Therefore, the full definition
of a computing network includes the number of oscillators in the network,
their types and the interactions between them. For the schizophrenia diag-
nosis we use the network illustrated in Figure 1a. The number of oscillators
m is fixed as m = 6. Also the illustrated geometry of interactions between
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FIGURE 1
(a) The structure of chemical oscillator network assumed to diagnose schizophrenia. (b)
Schematic representation of positions of different electrodes used for recording potential val-
ues. The potentials derived from the red marked channels are the ones that were used as inputs
for the classifier described in this paper.

oscillators does not change during optimization. The application of the top-
down strategy to this network means that the other parameters such as loca-
tions of input and normal oscillators, inhibition times for the normal oscil-
lators, method for inputing the predictor values or the type of interactions
between oscillators undergo optimization to achieve the highest accuracy on
a representative dataset of cases. Both systematic methods of optimization
and random trial and error ones can be applied. We have found [3–5] that
evolutionary optimization oriented on obtaining the best classifier for a rep-
resentative training dataset of the problem can lead to a computing network,
that performs the anticipated task with a reasonable accuracy.

Obviously one has to select the computing medium before starting to
optimize the network. In our previous papers on chemical database classi-
fiers [3–5] we used oversimplified event-based-model reflecting the basic fea-
tures of the oscillator time evolution and of interactions between oscillators
coupled by mutual activations. The event-based-model assumes sharp bound-
aries between three phases of the oscillation cycle: excitation, refractory and
responsive phase. It takes interactions into account as the condition for exci-
tation of an oscillator in the reponsive phase that is in contact with an excited
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oscillator. Here we consider more realistic model. We represent the individ-
ual oscillator dynamics using the two-variable Oregonator model [6,7] of the
Belousov-Zhabotinsky(BZ) reaction [8,9]. The interactions between individ-
ual oscillators are represented by reactions involving activators of individual
oscillators. The choice of model has been motivated by the broad interest in
applications of BZ-reaction for chemical information processing. The BZ-
reaction is a complex, catalytic oxidation of an organic substrate (usually
malonic acid) in an acidic environment [10, 11]. Two stages of BZ reaction
can be identified. One is a fast oxidation of the catalyst and the other is a slow
reduction of the catalyst by organic substrate. The solution color reflects con-
centrations of catalyst in the oxidized and reduced form, thus such nonlinear
behaviour of the medium as oscillations, wave propagation or appearance
of spatio-temporal patterns can be easily observed. If the ruthenium complex
(Ru(bpy)2+

3 ) is used as the reaction catalyst then BZ-reaction becomes photo-
sensitive [12]. Oscillations can be inhibited by light. For the same initial con-
centrations of reagents the medium can oscillate at dark, show an excitable
behaviour at low light intensity and has a steady state when it is strongly
illuminated. The Oregonator model used below to simulate in-silico the time
evolution of the medium (see Equations (1,2)) correctly describes this feature.
At specific conditions a spatially distributed medium can be locally excited
and the excitation can propagate in space. This type of behaviour resem-
bles propagation of nerve impulse in living organisms. As the result, the BZ
reaction has attracted attention as an inexpensive medium for experiments
with neuron-like chemical computing [13, 14]. Moreover, a moving pulse of
excitation can be interpreted as a propagating bit of information. Using this
interpretation one can construct chemical binary logic gates [15,16] and argu-
ment for universality of chemical reaction-diffusion computing [17]. How-
ever, such approach requires a spatially distributed medium with a complex
structure and precisely controlled reaction parameters.

Our recent results have shown that implementation of BZ-oscillator net-
works leads to simple computing structures that are able to perform com-
plex tasks [3–5]. Systems of interacting droplets containing reagents of BZ-
reaction can be stabilized by solution of lipids in the organic phase [18]. If the
photosensitive variant of BZ-reaction is used then oscillations in droplets can
be individually controlled. For example the droplets acting as normal oscilla-
tors in the network can be inhibited by illumination within the time interval
that does not depend on the input values. On the other hand the illumination
times of input droplets can be related to the corresponding predictor value.

Computer simulations have shown that even a small network composed
of a few oscillators, like the one shown in Figure 1a, with time evolution
described by the event-based-model can be used to diagnose if a cancer cell
is malignant or benign [4]. In this report we concentrate on designing of a
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classifier that is supposed to determine if a patient has schizophrenia or not.
Schizophrenia is the most common form of psychotic behavior where patients
experiences hallucination, delusion, chaotic speech. However, schizophre-
nia is difficult to detect and easily go undetected for years. It is believed
that information about schizophrenia can be extracted from the EEG sig-
nals recording brain activity [19]. Such signals are recorded from electrodes
placed in different parts of the scalp (see Figure 1b). In order to reduce the
amount of input data we assume that schizophrenia can be diagnosed using
the time average signals. We postulate that the information extracted from the
signal can be processed using a network of interacting chemical oscillators in
the form presented in Figure 1a. The detailed model of the network and infor-
mation about its optimization is introduced in the Section 2. The discussion
of obtained results is presented in the following Section.

2 NUMERICAL MODEL OF INFORMATION PROCESSING
NETWORK AND PREPARATION OF INPUT DATA.

The network we proposed for distinguishing between schizophrenic and
healthy patients was formed of just m = 6 oscillators arranged in geome-
try shown in Figure 1a. The broken arrows illustrate interactions between
the oscillators. The time evolution of reactions proceeding in each oscillator
were described by two-variable Oregonator model [6, 7]. If we neglect inter-
actions with the other oscillators of the network and the decay of activator
then equations describing the j th oscillator are:

∂u j

∂t
= 1

ε
(u j − u2

j − ( f v j + φ j (t))
u j − q

u j + q
) (1)

∂v j

∂t
= u j − v j (2)

where the variables u j and v j represent concentrations of an activator (Uj )
and an inhibitor (Vj ) for proceeding reactions. The parameter ε sets up a
ratio of time scales of variables u and v, q is a scaling constant and f is the
stoichiometric coefficient. In our simulations we used the following values
of model parameters for all oscillators (1 ≤ j ≤ 6): ε = 0.2, q = 0.0002 and
f = 1.1. The parameters of the Oregonator model were fixed and did not
undergo optimization.

The time dependent function φ j (t) describes the influence of illumination
on a photosensitive BZ-reaction and it is proportional to light intensity. We
considered φ j (t) in the form:

φ j (t) = 0.1 · (1.001 + tanh(−10(t − tilum( j))) (3)
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In this definition tilum( j) > 0 defines illumination of the j th oscillator. At the
beginning the value of φ j (t) ∼ 0.2 and the Oregonator model with parame-
ters given above predicts a stable steady state corresponding to u j = 0.0002
and v j = 0.0002. For long times φ j (t) approaches 0.0001 what corresponds
to an oscillator with the period of approximately 10.8 time units. The values
of tilum( j) were subject of optimization for the normal oscillators. If the j th

oscillator functions as the input one for the predictor pl then:

tilum( j) = tstart + (tend − tstart ) · pl (4)

where the parameters tend and tstart undergo optimization
The coupling between the oscillators #k and #j was described by addi-

tional reactions involving the activators Uk and Uj of these oscillators:

U j + Bj → Uk + Ck (5)

Uk + Bk → U j + C j (6)

with the reaction rate β.
We also assume that the activator of each reaction can spontaneously

decay with the reaction rate α:

U j + Dj → products (7)

Here symbols B, C and D denote other molecules involved in these reac-
tions. We assume their concentrations were high with respect to concentra-
tions of activators involved. Therefore, the concentrations of B, C and D
were assumed to be constant during the network evolution.

The values of Oregonator model parameters are similar to those given in
the literature [20]. However, we did not know how to select the values of α

and β, so they are also included into the optimization procedure.
Within our model the time evolution of the network is described by the

following set of kinetic equations:

∂u j

∂t
= 1

ε
(u j − u2

j − ( f v j + φ j (t))
u j − q

u j + q
)

−(α + β
∑

i=1,m

s j,i )u j + β(
∑

i=1,m

s j,i ui ) (8)

∂v j

∂t
= u j − v j (9)
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The last two terms in Equation 8 represent the coupling in between i th and
j th oscillators and the activator decay. The symbols s j,i are defined as:

s j,i = 0 if j = i or if j �= i and oscillators # j and #i do not interact,
s j,i = 1 if j �= i and oscillators # j and #i do interact.
In the considered network the interactions are fixed and illustrated in Fig-
ure 1a.

The set of equations (8,9) describes the network evolution after all parameters
characterizing the medium are known.

We postulate that information necessary to detect schizophrenia can be
extracted from the EEG signals recording brain activity [19]. Signals (the
time dependent potential values) were recorded from electrodes located in
different parts of the scalp (see Figure 1(b)). For the network optimization
presented below we used signals received from F7 and F8 channels marked
red in Figure 1(b). The dataset available on the web [21] containing signals
recorded on N = 84 patients, out of which Nh = 39 were healthy and the
other had symptoms of schizophrenia (Ns = 45).

The EEG signals were recorded with the sampling rate 128 Hz for 1
minute. Therefore, for each patient we have 16 data files corresponding to
different electrodes and each data file contains K = 7680 values of recorded
potential (in μV ). The time between consecutive potential values is �t =
7.8125ms. In order to reduce the amount of input data we characterized each
data file by a single number. Let V l (n, k) denote the potential recorded for
nth patient, on the lth electrode and at the time tk = k · �t . For each patient
we introduced 16 time averaged potentials defined as:

xl
n =

K∑
k=1

V l (n, k) (10)

To proceed with the analysis we normalized the time averaged potentials over
the set of patients. To do it we introduced:

μl = 1

N

N∑
n=1

xl
n

and

σl =
√√√√ 1

N − 1

N∑
i=1

(xl
n − μl)2.

The value of lth predictor for the patient n was defined as:

pl
n = xl

n − μl

σl
(11)
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Previous studies have shown that the signals obtained from the frontal
lobe of the brain( F7,F8) clearly indicates the difference in the brain activ-
ity of a schizophrenic patient from that of a healthy subject [19]. Therefore,
our problem of schizophrenia diagnosis is reduced to classification of the
dataset: DS = {(p7

n, p8
n, qn), n = 1, N } where the record type qn = 0 for a

schizophrenic patient and qn = 1 for a healthy subject.

3 NETWORK OPTIMIZATION AND RESULTS

3.1 Network optimization
The time evolution of a network considered as the classifier of a schizophre-
nia database can be studied numerically if we decide about locations of the
input and normal oscillators and if we define the values of tillum for the nor-
mal oscillators, tend , tstart for the data input, and α, β for the interactions
between oscillators. Moreover we have to select tmax that defines the interval
of time for which the network evolution is observed ([0, tmax ]). We postu-
late that information about patient health can be extracted from the number
of activator maxima recorded on a selected oscillator of the network, during
the time interval [0, tmax ]. In order to find which oscillator should be used as
the output one we calculate the mutual information [22] between the set G
of record types in the training dataset DS (G = {qn, n = 1, N }) and the sets
of oscillation numbers o j (n) observed on the j th oscillator in the network
when the predictors of nth database record are used as the network input
(O j = {o j (n), n = 1, N }). The oscillator #i for which the mutual informa-
tion between G and Oi is maximal is used as the network output. Therefore,
if we know the network parameters we can locate the output oscillator and
use the network for the diagnostic tasks. The mutual information calculated
for the output oscillator was considered as the measure of network fitness. It
can be expected that in the majority of cases the optimization based on the
mutual information leads to a classifier with the highest accuracy [23]. But
how to determine the network parameters?

Following the idea of cancer classification described in [4] we optimized
the system parameters using an evolutionary algorithm. All previously men-
tioned parameters underwent optimization. The population of 200 networks
were considered. At the beginning the population of networks was randomly
generated. The fitness of each network was calculated using the whole train-
ing dataset. The next generation comprised of 2% of most fit networks of the
previous population and of 98% offsprings generated by recombination and
mutation operations applied to oscillators from top 40% networks of the pre-
vious population. To obtain an offspring we applied the following operations
to the randomly selected networks:
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1. Recombination operation in the network illumination characteristics:
Another network selected from top 40% of the population was chosen
to undergo parameter recombination and a new offspring was created
with new values of tstart and tend , forming a new set of parameters:
{ tmax ,tof f spring

start ,tof f spring
end ,α,β}.

2. Mutation on the coupling factors and on rate of formation of products:
The coupling factor(β) and the rate of formation of product(α) were
mutated with mutation rate of 0.5. The mutated values of α and β were
the sum of a fraction of their old values and a random number.

3. Modification on the illumination times of normal oscillators:
Modification on the illumination times of normal oscillators was per-
formed again by randomly selecting another parent from 40% of best
fitted population and copying its values of tillum to the next generation.

4. Recombination on oscillator type and on the time of simulation:
The oscillator type, whether it will be an input oscillator or a normal
one, also underwent recombination. The parents were again chosen
randomly. The oscillator type can be altered or recombined. There
were no constraints given among selecting the type of oscillator.
There could be many or none input oscillators for a given predictor.
There may be no normal oscillators if it optimizes the network. And
an input oscillator was allowed to be the output one.

3.2 Results
At the beginning we considered the schizophrenia dataset classifier that pro-
cesses averaged 60 s long signals. Considering the previous reports [19] we
selected F7 and F8(frontal lobe) channels as these that bring the most relevant
information about the patient state. In order to get information if a patient
characterized by the predictors p7 and p8 is healthy or ill we simulated
numerically the network evolution (Equations 8, 9) within the time interval
[0, tmax] using Cash-Karp R-K45 method [18] with h = 10−3 time step.

In the optimization procedure we considered the population of 200 clas-
sifiers and evolved it for 740 generations. The optimization progress is illus-
trated in Figure 2(a). When the optimization ended the fitness of the best
classifier was 0.416. Figure 2(b) presents the mutual information between the
patient state and the number of activator maxima recorded on all oscillators
of the most fit network. The oscillator #2 produced the maximum value of
the mutual information and it was selected as the output one. The optimized
network is characterized by: tmax = 79.5, tstart = 72.1, tend = 4.9, α = 0.46,
β = 0.65, tilum(1) = tilum(5) = 52.3. The structure of the most fit network is
shown in Figure 3(a). The circles with black rings are the normal oscillators.
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(a)

(b)

FIGURE 2
The optimization of the schizophrenia classifier processing the averaged 60 s long signals. (a)
The fitness value as a function of the number of evolutionary steps. The maximum value of fitness
obtained after 740 generations was 0.416 bit. (b) The mutual information between the patient
state and the number of activator maxima recorded on all oscillators of the optimized network
(cf. Figure 1a). The oscillator #2 produced the maximum value of the mutual information and it
was selected as the output one.

The ratio between the surface of the red area and the area of disk represent-
ing an oscillator is the ratio between tilum( j) and tmax . The circles with blue
rings mark locations of the input oscillators (I n1 represents the input from
F7 channel thus the predictor p7, I n2 represents the input from F8 channel -
predictor p8). The circle with a double ring is the output oscillator. As seen
the highest values of mutual information between the patient state and the
number of activator maxima was observed for an oscillator that was also the
input of predictor p8.
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(a)

(b)

FIGURE 3
The structure and function of the schizophrenia classifier processing the averaged 60 s long
signals. (a)The structure of optimized schizophrenia classifier. The circles with black rings are
the normal oscillators. The red shaded parts of the piecharts represent the ratio between tilum ( j)
and tmax . The circles with blue rings mark input oscillators (I n1 represents the input from F7
channel, I n2 represents the input from F8 channel). The circle with a double ring shows the
output oscillator. (b) The relationship between the number of activator maxima recorded on the
output oscillator and the patient health. The blue bars correspond to schizophrenic cases and the
orange ones to the healthy ones.

As the result of optimization procedure we obtained the most fit network
for schizophrenia diagnosis. But we do not know how to read out the informa-
tion coded in the number of the activator concentration maxima at the oscil-
lator #2. Figure 3(b) shows the relationship between the number of activator
maxima recorded on the output oscillator and the patient health. To trans-
late this result into classification algorithm we used the majority rule. If for a
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given observed number of activator maxima the number of ill patients in the
training dataset is larger than the number of healthy one than we assume that
all cases in which such number of maxima is observed diagnose schizophre-
nia. Therefore, we postulate the classification rule: if 1,3 or 4 maxima of
activator concentration are observed during the time evolution at the oscilla-
tor #2 then the patient is healthy. If the number of observed maxima is dif-
ferent then the patient is schizophrenic. For the considered database this rule
gives 82% accuracy in schizophrenia determination. The accuracy was calcu-
lated as the ratio between correctly diagnosed cases to all cases of the training
dataset DS . It is also interesting to notice that for 12 of 39 healthy patients
were diagnosed incorrectly. On the other hand the diagnosis of schizophrenic
patients was more accurate as there were only 3 mistakes for 45 cases.

The classifier described above have shown 82% accuracy in schizophrenia
diagnosis. But can it be improved? The obvious approach is to use a larger
network that would allow to consider a dataset with a larger number of pre-
dictors. However, such approach can be strongly biased by a limited number
of cases in the training dataset. We would like to present another approach.
Each 60 second signal V l (n, k) for nth patient, on the lth electrode at time
tk = k · �t is composed of K = 7680 values of recorded potential. We divide
this signal into signals:

V 1l(n, k) = V l(n, k) f or k = 1, 2560

V 2l (n, k − 2560) = V l(n, k) f or k = 2561, 5120

V 3l (n, k − 5120) = V l(n, k) f or k = 5121, 7680

It means that instead of one 60 s long signal we considered 3 signals V 1, V 2
and V 3 recorded during the time intervals [0, 20s], [20s, 40s] and [40s, 60s]
respectively. The signals V 1, V 2 and V 3 were averaged and normalized
using the same algorithm as applied to the signal V (Equations 10,11). As
the result we obtained three datasets DS1, DS2 and DS3, where the averaged,
normalized potentials observed in subintervals of time were matched with the
parameter describing the patient health. Next we performed the optimization
procedure to obtain oscillator networks that classify the datasets DS1, DS2,
DS3. For each case we considered population of 100 classifiers and optimized
it for 500 generations. The progress of optimization is illustrated in Figure 4.
Subfigures (a), (b) and (c) correspond to datasets DS1, DS2 and DS3 respec-
tively. We can see that in all cases the fitness of the best classifier ( 0.33 bit,
0.323 bit and 0.371 bit, respectively) was lower than that achieved within 500
generations for the network classifying the dataset DS .
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(b)

(c)

(a)

FIGURE 4
The progress of optimization of the schizophrenia classifiers processing the averaged 20 s long
signals. Subfigures (a), (b) and (c) correspond to datasets DS1, DS2 and DS3 respectively. The
maximum values of fitness obtained after 500 generations were 0.33 bit, 0.323 bit and 0.371 bit.

The structures of the most fit classifiers are shown in Figure 5 (subfig-
ures (a), (b) and (c) represent DS1, DS2 and DS3 respectively). Like in Figure
3a the circles with black rings are the normal oscillators. The red shaded
parts of the piecharts represent the ratio between tilum( j) and tmax . The cir-
cles with blue rings mark input oscillators (I n1 represents the input from
F7 channel, I n2 represents the input from F8 channel). The circles with a



14 ASHMITA BOSE AND JERZY GORECKI

double ring shows the output oscillator. The values of parameters describing
the classifiers were:

1. For the classifier of DS1:
tmax = 85.8, tstart = 12.5, tend = 79.3, α = 0.71, β = 0.52, tilum(3) =
tmax .

2. For the classifier of DS2:
tmax = 89.6, tstart = 94.6, tend = 10.1, α = 0.38, β = 0.11, tilum(2) =
24.4, tilum(6) = 56.8.

3. For the classifier of DS3:
tmax = 77.9, tstart = 28.1, tend = 78.6, α = 0.76, β = 0.17, tilum(1) =
31.2, tilum(3) = tilum(5) = 9.37, tilum(6) = tmax .

Therefore, both structures and parameters describing the classifiers of sig-
nals coming from different subintervals are very different. This may suggest
insufficient optimization (but still optimization with a similar size of pop-
ulation and number of generations led to reasonable results for other prob-
lems [4, 5]), or, more likely too small and too divergent training dataset.
Despite the differences it is interesting that in all cases the output droplet is
also the input of a predictor. It is p7 for the classifier of DS2and p8 for classi-
fiers of DS1 and DS3. Not surprising the relationships between the number of
activator maxima recorded on the output oscillator and the patient health are
different for DS1, DS2 and DS3. They can be extracted from results illustrated
in Figure 6. For the classifier of DS1 a patient is schizophrenic if the number
of activator maxima recorded on the output oscillator o4 ∈ {0, 3, 5, 6, 8}. For
the classifier of DS2 a patient is schizophrenic if o3 ∈ {0, 5, 9} and for DS3

a patient is schizophrenic if o2 ∈ {0, 2, 6, 7, 9}. The accuracy of such classi-
fiers were 77%, 75% and 79.7% for DS1, DS2 and DS3 respectively. Now we
can combine the expertise of all three classifiers together and postulate the
a patient is ill if at least two of three classifiers predict schizophrenia. The
accuracy of such classification increases to 90% and there were 7 healthy
patients and only a single ill patient that were incorrectly diagnosed.

4 CONCLUSIONS AND DISCUSSION

In the presented study we assumed that schizophrenia can be detected by
a chemical oscillator network that analyses EEG signals recorded from
electrodes located on a patient scalp. We have introduced a more realistic
model of the oscillators and of interactions between them, than rather crude
event-based-model [3–5] used in a series of previous papers on database
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FIGURE 5
The structures of the schizophrenia classifiers processing the averaged 20 s long signals. Sub-
figures (a), (b) and (c) correspond to datasets DS1, DS2 and DS3 respectively. The circles with
black rings are the normal oscillators. The red shaded parts of the piecharts represent the ratio
between tilum ( j) and tmax . The circles with blue rings mark input oscillators (I n1 represents the
input from F7 channel, I n2 represents the input from F8 channel). The circles with a double ring
show the output oscillators.

classification using interacting oscillators. The application of the new model
does not change the main conclusion of previously reported results: opti-
mized networks of chemical oscillators can be successfully applied for classi-
fication problems. In our case a network of 6 coupled oscillators gave 82% of
correct diagnosis for cases in the considered dataset. Its modification based
on three stage diagnosis on parts of recorded signal produced even higher,
90% accuracy of diagnosis.

Although the presented results are encouraging the access to data for
larger number of patients seem important for the further studies. We think
our results can be strongly affected by a small size of available data. It can
be seen when we divided the recorded potentials into three time sub-intervals
and optimized the classifiers separately for each sub-interval (cf. Figure 5).
Seeing a typical randomness of recorded signal (cf. Figure 1) it is hard to
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FIGURE 6
The relationship between the number of activator maxima recorded on the output oscillator and
the patient health for of the schizophrenia classifiers processing the averaged 20 s long signals.
The blue bars correspond to schizophrenic cases and the orange ones to the healthy ones. Sub-
figures (a), (b) and (c) represent DS1, DS2 and DS3 respectively.

expect that results measured for the first 20 s sub-interval are qualitatively
different than those for the next one. Nevertheless, we obtained significantly
different networks for the diagnosis in different subintervals. It can happen
that there are many local maxima of optimization, but we believe that the
difference in our optimization comes from a small sample of test cases. We
believe, that for unbiased set of data the results of each 20 s interval belong-
ing to healthy and ill patients should be similar, because the signals should be
independent on the time when they are measured. Therefore, the difference
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between classifiers optimized for different time intervals illustrates the ran-
domness in the considered dataset.
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