
Int. Journ. of Unconventional Computing, Vol. 16, pp. 303–326 ©2021 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

Hallmarks of Criticality in Neuronal Networks
Depend on Cell Type and the Temporal

Resolution of Neuronal Avalanches

KRISTINE HEINEY1,2,∗, VIBEKE DEVOLD VALDERHAUG3,
OLA HUSE RAMSTAD3, IOANNA SANDVIG3, AXEL SANDVIG3,4,5

AND STEFANO NICHELE1,6

1Department of Computer Science, Oslo Metropolitan University, Norway
2Department of Computer Science, Norwegian University of Science and

Technology (NTNU), Norway
3Department of Neuromedicine and Movement Science, NTNU, Norway

4Department of Neurology, St. Olav’s Hospital, Norway
5Division of Neuro, Head, and Neck, Umeå University Hospital, Sweden
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The human brain has a remarkable capacity for computation, and it has
been theorized that this capacity arises from the brain self-organizing
into the critical state, a dynamical state poised between ordered and dis-
ordered behavior and widely considered to be well-suited for compu-
tation. Criticality is commonly identified in in vitro neuronal networks
using an analytical approach based on the size distribution of cascades
of activity called neuronal avalanches. In this study, criticality analy-
sis was applied to different in vitro neuronal networks with two areas of
focus: evaluating the effect of the size of the time bins used for neuronal
avalanche detection and observation of the development of networks of
neurons derived from human induced pluripotent stem cells. This pre-
liminary study is expected to aid in the construction of models capable
of emulating neuronal behaviors identified as well-suited for computa-
tion and ultimately inform the development of brain-inspired computing
substrates that are better able to keep pace with increased demand for
data storage and processing power.
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1 INTRODUCTION

The human brain is a complex dynamical system that is able to process infor-
mation with remarkable efficiency. It has been theorized that the brain lies in
a dynamical regime poised between order and disorder, known as the critical
state [1], and that this state of criticality is largely responsible for the brain’s
capacity for computation [2]. The functions of the brain arise from the inter-
action of many individual neurons communicating across dynamic networks
to produce complex macroscopic behaviors. The study of individual neurons
thus gives us little insight into the larger-scale activity of the brain, as the
mechanisms governing local interactions lead to the generation of emergent
complex behavior at a larger scale, a phenomenon known as self-organization
that is commonly observed in complex systems [3, 4].

Criticality in dynamical systems can be considered analogous to the criti-
cal point observed in phase transitions in matter [5]. The interactions among
the many microscopic constituent components of matter produce properties
observable at the macroscale that simply do not exist at the microscale;
for instance, the pressure of a gas, a macroscopic property, can only be
considered meaningful when many gas molecules exist in a volume. This
macroscopic behavior also exhibits transitions, known as phase transitions,
when the system is subjected to different external conditions (e.g., tempera-
ture or pressure). The critical regime, lying between ordered and disordered
phases, confers the distinct functional advantages of high sensitivity to a wide
range of inputs and long-range information transmission, behaviors that are
commonly considered to be characteristic of and beneficial in neural sys-
tems, and it has been theorized that the brain self-organizes into this state
[6].

Thus, criticality may provide some insights into the mechanisms under-
lying the computational power of the brain. Such mechanisms have the
potential to be harnessed in engineerable substrates toward the development
of novel computing technology with greater data processing and storage
capabilities than currently available devices. Current computing technology
is based on the von Neumann architecture, in which tasks are performed
sequentially and control, processing, and memory are each allocated to struc-
turally distinct components. This approach to hardware construction cannot
keep up with the rapidly rising amount of data generated in today’s soci-
ety. Furthermore, although recent advancements in machine learning methods
have expanded our present data handling capabilities, processing continues to
be performed on conventional hardware and thus requires huge amounts of
training data, computational time, and computing power.

Turning to the brain for inspiration would enable the development of
novel physical computing architectures that are capable of learning, scalable,
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energy-efficient, and fault-tolerant. Behaviors we observe in the brain could
be targeted for emulation in engineerable self-organizing substrates, which
have an inherent capacity for information transmission, storage, and modifi-
cation [1]. This would bring computation from the digital realm to the phys-
ical realm, enabling improved efficiency through the direct exploitation of
material and physical processes for computation [7, 8]. The use of physical
self-organizing substrates in computation has been explored in recent stud-
ies on reservoir computing, in which a computing substrate is exploited by
training a readout layer to interpret the output of a system to a target prob-
lem [9, 10].

The present study is part of a larger project called Self-Organizing Compu-
tational substRATES (SOCRATES) [11, 12], the aim of which is to develop
self-organizing computing hardware based in nanomagnetic substrates and
biological in vitro neural networks, taking inspiration from the brain to guide
the design. Criticality represents one important desirable behavior that can
provide further insight into which mechanisms displayed by neuronal net-
works, such as mechanisms of functional connectivity and information stor-
age and transmission, are most beneficial for computation. This approach is
also expected to prove useful in the identification of perturbed networks, as it
is expected that different perturbations, such as neuromodulation or electri-
cal stimulation, may induce a deviation from the expected dynamical behav-
ior as it relates to criticality. This will be applicable in the study of disease
models and can also provide insight into how to ensure the robustness of
brain-inspired computational systems against perturbations.

In the present study, criticality analysis based on the size distribution of
neuronal avalanches was applied to electrophysiological data obtained from
networks of dissociated neurons cultured atop microelectrode arrays (MEAs).
The considered networks have been previously analyzed in related studies
and were from two different types of neurons: primary rat cortical neu-
rons [13] and dopaminergic neurons derived from human induced pluripotent
stem cells (iPSCs) [14]. The results indicate that critical behavior is robustly
identifiable with this classification method regardless of the time bin size.
Additionally, preliminary investigation into the development of the iPSC-
derived networks suggests that they may enter into an early stage of criticality
and then deviate from criticality at later stages of their maturation.

The remainder of this paper is organized as follows. Section 2 presents
related work using in vitro neuronal networks for computing and control,
links criticality to computation, and gives some background on the funda-
mentals of the method used in this study to identify hallmarks of criticality in
neuronal systems. Section 3 outlines the experimental and analytical methods
used in this study. The results are presented and discussed in Section 4, and
Section 5 concludes the paper.
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2 RELATED WORK: COMPUTATION IN IN VITRO NEURONAL
NETWORKS

Neural computation has long been a subject of interest among researchers
from a wide variety of disciplines. The advent of MEA technology has pro-
vided researchers with the ability to record electrophysiological activity from
populations of neurons over long time periods and to provide targeted inputs
to the network via electrical stimulation [15]. This has opened the door to
studying neural computation in a reduced in vitro model and using living neu-
ronal networks for computational tasks. This section first gives some back-
ground on how neuronal networks may be interfaced with a physical or vir-
tual environment or used as a computational “reservoir” to perform comput-
ing tasks. Then the concept of criticality in neural systems is introduced as a
means to study the computational capacity of a neuronal network.

2.1 Embodiment of in vitro neuronal networks
Within the field of artificial intelligence, the concept of embodiment as put
forth by Rodney Brooks states that any intelligence is in some regard depen-
dent on a body to actualize itself [16]. That is, intelligence needs to be part of,
or embodied as, an interacting agent within an environment (see Figure 1(a)).
The conceptual and philosophical implications of this are far too vast to cover

FIGURE 1
In vitro neuronal networks can be used for computational tasks. (a) Embodiment of a living
in vitro neuronal network. The network activity is recorded by interfacing with an MEA and
decoded to produce output behavior in the animat or other embodied agent. Sensory information
from the animat is then fed back to the network via electrical stimulation. (b) Illustration of
reservoir computing (reproduced from [21]). Inputs are encoded and fed into the reservoir, and
outputs from the reservoir are decoded using a readout layer, which is a trained artificial neural
network.
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in any detail here, instead we will briefly consider how embodiment relates to
the computational efficiency of an in vitro neuronal network. Hence, can the
performance of an embodied network in an environment serve as a proxy for
its computational capacity, and conversely, can alternate methods of estimat-
ing the computational capacity of a network be used to predict their embodied
behavior?

Motor control, such as bipedal locomotion, still stands as a serious chal-
lenge within robotics where biological systems excel in comparison to arti-
ficial systems [16]. As a result, much of the focus within in vitro network
embodiment has been geared towards sensory–motor circuits, utilizing the
biological component as part of an adaptive control circuit for the robotic
body, or “animat” [17]. As the in vitro network acts as part of the robot’s
motor control, the performance of the robot’s interaction with the environ-
ment, such as its collision avoidance, provides a grounded and tangible read-
out for the network’s computational ability.

The earliest implementations of this type of embodiment of in vitro net-
works stemmed from the Potter group at Georgia Tech [17–19]. As a proof-
of-concept, an in vitro network of dissociated cortical neurons cultured on
an MEA was embodied as a simplified flight controller with the objective of
maintaining the pitch and roll of a virtual plane at constant values. Feedback
control was implemented based on the activity recorded from the in vitro
network at specific output electrodes of the MEA, and errors from the flight
telemetry were fed back to the network by applying electrical stimulation at
specific error feedback electrodes [20].

Despite being one of the first implementations of such an embodied sys-
tem, this study remains one of the most complex and highlights many of
the challenges with such embodied systems. These challenges can be briefly
classified as follows: physical embodiment, closing the loop, providing input
or feedback by stimulation, training, and network complexity. The first chal-
lenge is crucial to many reductionist approaches, as the control of a physical
entity or robot is a difficult task. With a reduced virtual robot it is possible to
abstract away the physical complications of actuators, energy supply, chas-
sis, and environmental conditions while maintaining complete control over
the sensors output to the encoders [17, 22, 23]. However, despite the com-
plications, several working implementations of physically embodied cultures
have been reported in the literature [18, 20, 23–26].

With both physical and virtual systems, it is necessary to consider the
placement of the network within the circuit. In Demarse and Dockendorf’s
[20] virtually embodied flight controller, several input electrodes were des-
ignated to provide the encoded flight telemetry through electrical stimula-
tion, closing the loop between input and output [19, 23, 27, 28]. Conversely
in an open “output only” loop, networks receive no error feedback; this tends
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to reduce performance, as neither the self-organizing nor plastic features of
the cultures are utilized. A closed-loop system is closer to a truly embodied
sensory–motor system; however, encoding and providing sensory input to the
network brings with it several unique problems.

Biological neural networks are self-organizing and adaptive systems,
which is a large component of their computational advantage compared to
artificial systems [29–31]. However, the dynamics of these neural networks
necessitate the researcher relying on either innate adaptation to stimuli, an
adaptive encoder, or a training step to guide the network to a desired out-
put state [20, 23, 25, 32–34]. Because of the immense complexity of neural
dynamics, most previous studies on embodiment have relied on the network’s
plastic mechanisms in combination with some positive local or global rein-
forcement training, though some also utilize a form of adaptive encoder. As
of today, the performance of input encoding and training remains the largest
challenge in the embodiment of in vitro networks. Future studies promise to
apply more realistic and sophisticated methods such as modular hierarchical
networks and 3D or organoid cultures, but the input and training challenge
will still remain with these methodologies—and likely at a greater scale than
with the typical 2D monolayer cultures currently in use [22, 25, 35].

2.2 In vitro networks as computational reservoirs
Moving away from the embodiment to the related approach of reservoir com-
puting [36], some of the major issues with embodiment can be bypassed,
namely that of training and physical robotics, while still targeting the main
question of how in vitro networks may be used for computational tasks.

Reservoir computing [37,38] is a brain-inspired method of training recur-
rent neural networks, a notoriously difficult task, that maps a nonlinear input
into a high-dimensional dynamical system—typically an untrained randomly
connected recurrent artificial neural network—and trains only a simple lin-
ear readout layer to achieve the wanted computation (Figure 1(b)). Different
substrates have been shown to possess the necessary rich dynamics to act as
reservoirs, including a bucket of water [39] and different brain regions such
as the primary visual cortex of anesthetized cats [40]. For a recent review of
physical reservoir computing substrates see [41].

In an early approach to reservoir computing with in vitro neuronal
networks [42], network responses were classified using a support vector
machine. Additionally, a prototype closed-loop neuro-reservoir system, in
which an in vitro network of iPSC-derived neurons is embodied in a vir-
tual robot, provides insight into the link between embodiment and reservoir
computing [12]. One important property of reservoir computers is the sep-
aration property, which represents the separability of output responses from
the reservoir, and this property has been demonstrated in in vitro neuronal
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networks after stimulation [43]. The echo state property of neuronal cell cul-
tures has also recently been demonstrated using a high-density MEA [44].
In this preliminary work, the selected output nodes exhibited reproducible
spike trains in response to identical driving stimuli, thus showing asymptotic
properties of transient trajectories to driving signals.

Although work on the use of living neuronal networks as computational
reservoirs is progressing, an important question remains unanswered: How
can we predict the computational performance of neural systems and thereby
select for those networks that are best suited as reservoirs? In many other
dynamical systems, it has been shown that the critical state, also known as the
“edge of chaos” [1], optimizes many properties related to the system’s com-
putational performance [45–53]. The study of criticality in neural systems
has recently gained traction in the neuroscience community, and the ability
to identify the dynamic state of neuronal networks offers great promise to the
study of computation—not only in terms of the use of living neural systems
in computational and embodiment applications but also in gaining inspiration
from their self-organizing behaviors as we improve bio-inspired approaches
to computation. In the next section, we review some fundamental approaches
to studying criticality in in vitro neuronal networks.

2.3 Neuronal avalanches and criticality
Systems operating at or near the critical state have been shown to confer a
number of computational advantages, maximizing various properties such as
the dynamic range, the number of metastable states, and mutual informa-
tion (reviewed in [54, 55]). This suggests that approaches to evaluating the
dynamic state of neuronal networks may aid in predicting how well a net-
work will perform at computational tasks and may also give insight into how
the networks are able to efficiently process information. A number of meth-
ods to identify the dynamic state of in vitro neuronal networks have been
developed; this work represents a first step in applying these methods with
the goal of identifying networks well-suited for computation and studying
their self-organizing principles.

A classification method based on the size distribution behavior of
network-wide cascades of activity called neuronal avalanches was applied
to data obtained from different in vitro networks of dissociated neurons. This
analytical approach was developed by [56] based on the dynamical behavior
observed in other similar physical systems. In neuronal information process-
ing, individual neurons integrate inputs from many other neurons and redis-
tribute their activity back to the network once a threshold is reached; this is
similar to the integration and redistribution behavior observed in many other
complex systems, such as earthquakes and forest fires [56]. With the activa-
tion of individual components of these systems comes a cascade of activity
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that propagates through the network, known as an “avalanche.” One charac-
teristic of criticality is that dynamical systems in the critical state show scale-
free behavior, with common behaviors traversing a wide range of scales [5].

With the method applied here, it can be determined whether the network is
in the critical state at a given time point based on the results of fitting a power
law to the probability distribution of the size of avalanches recorded in the
network. In the critical state, the size distribution should follow a power law,
meaning the probability of an avalanche occurring with a given size is propor-
tional to the size raised to a constant power; in contrast, sub- and supercrit-
ical dynamics respectively yield exponential and bimodal size distributions.
As stated in Section 1, systems in the critical state, poised between order and
disorder, are considered well-suited for computation and have been shown
to be sensitive to a wide range of inputs and capable of effectively storing
and transmitting information [1]. In the case of neuronal systems, criticality
rests at a transitional point between asynchronous and synchronous behavior,
with many spikes setting off only tiny cascades of activity and few spikes
eliciting full-network responses. The foundations and presumed benefits of
the brain self-organizing into the critical state have been reviewed in recent
papers [2, 6, 57].

The original study on neuronal avalanches and criticality focused on slice
cultures [56], but work has been expanded to dissociated cultures as well
(e.g., [58–60]). However, the focus of criticality analysis to date has been pre-
dominantly on cortical neurons, and little to no consideration has been given
to the possibility of this behavior being observed in other types of neurons.
Previous reports have demonstrated that avalanches of activity follow power-
law scaling in both the spatial and temporal domains, and that this behavior
is independent of the spatial sampling of the network (i.e., inter-electrode
distance) and the selection of the time bin size [58].

One possible mechanism considered to be responsible for this critical
behavior is the striking of an appropriate balance between excitation and inhi-
bition [54, 61]. This balance appears to be reached only after a certain point
in the maturation of dissociated networks, as they have been observed to tend
to pass through an early subcritical stage followed by a supercritical stage
before finally settling into the critical state; this has led to speculation about
a mechanism of initial hyperconnectivity followed by pruning to achieve the
appropriate balance of integration and segregation [58, 59]. Interestingly, a
similar progression of synaptic density is seen in human development [62],
indicating this behavior seen in some cases in vitro may be analogous to in
vivo development. It has been demonstrated that criticality is associated with
a large dynamic range [61] as well as high information capacity and trans-
mission [54], further supporting the theory that criticality in the brain confers
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functional benefits. Furthermore, modeling work has revealed that criticality
may be associated with scale-free, small-world network architectures [63].

As stated previously, the data analyzed in the present study has been pre-
viously analyzed in earlier studies by the present authors on criticality in neu-
ronal networks with induced Parkinson’s-related proteinopathy [14] and on
whether supercritical cortical networks can be manipulated into the critical
state by increasing inhibition [13]. In the former study, the results indicated
that proteinopathy can be associated with alterations in the normal develop-
mental trajectory with respect to criticality. It was observed that the unper-
turbed (control) networks eventually deviated from criticality after an initial
period consistent with criticality, whereas the networks with induced pro-
teinopathy remained in a state consistent with critical behavior. In the latter
study, the cortical networks were observed to mature over 51 days in vitro
(DIVs), at which point they showed highly synchronized activity consistent
with the supercritical state. Perturbation with γ -Aminobutyric acid (GABA)
to increase inhibition was observed to break this synchrony and bring the
networks into the critical state. Building on these previous works, this study
delves more into the applied methodology and the implications this analysis
has for future work. More focus is also given to observations of the normal
course of maturation of the iPSC-derived networks in terms of their trajectory
through different dynamic states.

3 METHODS

In this study, two types of neuronal networks were evaluated: primary rat
cortical neurons and dopaminergic neurons derived from human iPSCs. This
section first outlines the preparation of the networks and the setup of the
electrophysiology experiments. The analytical methods used to classify the
networks as critical or not critical are then described.

3.1 Preparation and electrophysiology of cortical and iPSC-derived
networks

Two cortical networks (Networks cA and cB) and two iPSC-derived networks
(Networks iA and iB) were analyzed in this study. The cortical networks are
the same as those analyzed in a previous related study addressing whether
supercritical cortical networks could be manipulated into the critical state
by increasing inhibition in the networks [13]. The iPSC-derived networks are
the two control networks in a previous study on the evaluation of criticality in
networks with induced proteinopathy to investigate the associations between
criticality and proteinopathy related to Parkinson’s disease [14]. Detailed
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preparation and electrophysiology methods can be found in these previous
papers, and the main points are summarized here.

For the cortical networks, primary rat cortical neurons (Thermo Fisher)
were seeded on a feeder layer of human astrocytes (Gibco, Thermo Fisher)
and left to mature for 7 DIV prior to recording. The same MEA recording
system was used to record the electrophysiological behavior of the netowrk
every second day for 15 min. Microscope images of the two cortical net-
works are shown in Figure 2. At DIV 51, GABA (Sigma Aldrich) was added
to the cortical networks at rising concentrations to disrupt the excitation-to-
inhibition ratio by increasing network inhibition. After obtaining a baseline

FIGURE 2
Microscope images of the primary cortical networks analyzed in this study. Network cA is shown
at DIV 49, and Network cB is shown at DIV 51. Image reproduced from [13].
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FIGURE 3
Representative example of an in vitro neuronal network derived from iPSCs.

recording, GABA was added directly to the culture media in microliter vol-
umes, and recordings were taken immediately following perturbation. Dif-
ferent concentrations (10 and 50 μM for Network cA and 5, 10, and 25 μM
for Network cB) were chosen to provide increasing degrees of perturbation;
lower concentrations were used for Network cB because it showed lower lev-
els of activity.

For the iPSC-derived networks, human iPSCs (ChiPSC18, Takara Bio-
science) were reprogrammed using a protocol for midbrain dopaminergic
neurons adapted from previous studies [64–66]. Reprogramming was con-
cluded on day 16, at which point the cells were left to mature. A microscope
image of a representative iPSC-derived network is shown in Figure 3. The
spontaneous electrophysiological activity of the networks was recorded using
a 60-electrode MEA together with the corresponding in vitro recording sys-
tem (MEA2100-System, Multi Channel Systems) and software (Multi Chan-
nel Experimenter, Multi Channel Systems). Recordings of 6 min were taken
starting after three weeks of maturation (DIV 21), starting from the date at
which the reprogramming was concluded, and a total of 18 recordings taken
over the period from DIV 21 to DIV 56 were analyzed for each network.

3.2 Criticality analysis
The criticality analysis was the same as that applied in the previous studies on
these networks [13, 14]. The focus of the analysis in this study was twofold:
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first, to demonstrate the effect of different time bin widths on the analysis
results and discuss different motivations for time bin selection, and second,
to present and discuss the observed course of maturation of the iPSC-derived
networks in terms of their dynamic state.

The raw electrophysiological data obtained from each network at each
time point was first bandpass-filtered with a passband from 300 Hz to 3 kHz.
Spikes were detected using a simple thresholding approach using a threshold
of a given number of standard deviations below the median of the signal∗ .
The number of standard deviations for the threshold was set to 6 and 5 for the
cortical and iPSC-derived networks, respectively. The threshold of 5 standard
deviations was also used in the previous proteinopathy study [14]; as noted
in this previous study, the spikes recorded from these networks had a small
signal-to-noise ratio (SNR), which complicated the avalanche analysis if the
threshold for detection was raised. In the previous study on the manipulation
of the dynamic state of the cortical networks, multiple thresholds (6, 7, and
8 standard deviations below the median of the signal) were applied. Based
on the results observed there, 6 standard deviations was selected to yield
sufficiently high numbers of avalanches for a robust fitting; this is important
for the post-perturbation recordings where criticality was observed, as GABA
also has the effect of suppressing activity.

Avalanches were then detected according to the method developed by
[56]. The detected spikes were binned in time using different time bin widths
ranging from 0.2 to 16 ms to evaluate the effect of the bin width on the analy-
sis results (see Figure 4), as has been done in previous studies to evaluate the
robustness of the analysis against changes to the bin size and the effect of the
bin size on the slope of the power law fitting (e.g., [56,58]). Avalanches were
detected as any number of consecutive time bins containing at least one spike
on any recording channel, bounded before and after by empty time bins. The
size of an avalanche is defined as the number of recording channels that are
active over the course of the avalanche.

A power law fitting was then performed for each of the resulting avalanche
size distributions. As in the previous cortical study [13], nonlinear regression
(NLR) and maximum likelihood estimation (MLE) were applied as the fitting
methods, and the results were compared. The power law for the fitting takes
the form

P(s) ∝ s−α, (1)

where s is the avalanche size, P(s) is the probability of an avalanche having
size s, and α is the power of the fitted power law (slope of the fitted line in

∗ Code for spike detection is available at https://github.com/SocratesNFR/MCSspikedetection.
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FIGURE 4
Definition of a neuronal avalanche and demonstration of the effect of different time bin widths
on avalanche detection. Each dot represents a spike recorded on one of the recording channels
(Chs. 1–4). A time bin is active when it contains at least one spike and empty when there are
no spikes. An avalanche is defined as a sequence of consecutive active time bins preceded and
followed by empty bins, and the size is the number of electrodes active during the avalanche.
The use of larger time bins may result in spikes being collected into fewer avalanches with a
greater average size.

log–log space). The fit was applied over the size range of s = 2 to 59 elec-
trodes, following previous works [58,63]. The goodness of fit was calculated
using the method by Clauset et al. [67]. Synthetic datasets of avalanche sizes
were generated from the fitted distribution, and the Kolmogorov–Smirnov
(KS) distances of these datasets from the theoretical distribution were com-
pared to the empirical KS distance. The fitting was rejected if the fraction p
of synthetic KS distances that were greater than the empirical KS distance
was less than 0.1 (p < 0.1)† .

4 RESULTS AND DISCUSSION

This section first presents the effect that varying the time bin size had on the
analysis results. Network cA is the focus of this type of analysis because it
had the largest amount of activity, but similar results were observed across
all four networks. The development of the iPSC-derived networks is then
presented, with a focus on the development of Network iA. The section con-
cludes with a plan for future work.

† Code for avalanche detection and goodness of fit evaluation is available at https://github.com/
SocratesNFR/avalanche.
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4.1 Impact of time bin size
The effect of the time bin width is presented here using the data from Network
cA as a representative example among the networks, as it showed a higher
mean firing rate and more active electrodes than the other networks, enabling
better fittings over a wider range of bin sizes. However, similar trends were
observed across all four considered networks when there were a sufficient
number of avalanches (N � 1000) to allow for robust fitting results.

As stated in Section 3.2, the time bin width was set to different values
ranging from 0.2 to 16 ms to evaluate the effect of the binning on the analysis
results. The schematics in Figure 4 show how the use of larger bin sizes tends
to cluster more spikes together into fewer avalanches of a larger size. It has
been demonstrated by [58] that increasing the bin size to a certain point does
not change the power-law scaling behavior of the avalanche size distributions
that result; however, beyond a certain point, larger bin sizes may produce so
many large avalanches that the network may appear supercritical.

Figure 5 shows the effect of the bin size on the avalanche size distribution
functions normalized by the frequency of the smallest avalanche size, i.e., the
number of detected avalanches of size 1. This choice of normalization makes
it more clearly visible that there is a steeper drop-off in the avalanche size
when smaller bins are used. Above each set of size distributions, raster plots
showing the first 10 s of activity are shown to demonstrate the qualitative
difference between the activity patterns displayed at the two time points.

The two cases shown here are from two different recording time points
of Network cA identified as corresponding to subcritical and critical behav-
ior in the previous study [13], with the critical case corresponding behavior
observed after the addition of GABA on DIV 51 to bring it from supercriti-
cal to critical. As stated in the previous paper, the analytical method applied
here enables the classification of network dynamics as critical or not critical,
and further classification of non-critical dynamics as sub- or supercritical was
performed by visual inspection of the shape of the size distributions; rigorous
classification of non-critical cases remains a task for future work.

In the non-critical case (Figure 5(a)), the use of smaller time bins (200
μs to 1 ms) produced rapidly decaying size distributions, consistent with the
exponential decay expected when the dynamics are subcritical. Interestingly,
larger bins (4 to 16 ms) produced the bimodal distributions typical of super-
critical dynamics‡ . This phenomenon arises because multiple avalanches
detected with smaller bin sizes are grouped together when larger bin sizes
are used (see Figure 4). Perhaps most noteworthy among the size distribu-
tions is the bin size of 2 ms. In this case, the power-law fitting results with

‡ It should be noted that although the raster plot in this case (top of Figure 5(a)) appears to show rather
synchronous behavior across the network, the synchrony is much looser than at later time points; for a
more thorough comparison, see Figure 2 of [13].
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(a)

(b)

FIGURE 5
Effect of varying the time bin size used for avalanche detection on the size distribution function
in cases that have been identified as having (a) subcritical (DIV 21) and (b) critical (DIV 51 after
perturbation by 50 μM GABA) dynamics. The avalanche size distributions are normalized by
the frequency of the smallest avalanche size (size of 1 electrode). Both cases were obtained from
Network cA.

the NLR method indicated a significant fit (α = 1.55, p = 0.216), in con-
tradiction with the size distributions obtained with the other bin sizes, all of
which yield p < 0.1. This indicates that it may be possible to obtain spurious
power-law fits if the bin size is not appropriately selected.
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In contrast, in the critical case (Figure 5(b)), the power-law fitting results
yielded a significant fit (p > 0.1) with the NLR method regardless of the bin
size. As the bin size was increased, the value of α decreased (α = 1.4 for
200 ms, α = 1.29 for 16 ms), as larger bin sizes favor larger avalanches. This
indicates that critical behavior may be identified robustly regardless of the
time bin selection. Similar behavior was observed for Network cB on DIV
51 when it had been manipulated into the critical state with GABA, but as
reported previously, the MLE fitting method rather than the NLR method
was found to yield significant fits.

One interesting point to note is that the slopes obtained do not match with
those indicated in previous studies using the average interval between succes-
sive events on different electrodes (inter-event interval, or IEI), considering
only IEIs below a certain cutoff value (selected as, e.g., 65 ms in [58]). In the
seminal study by [56], they proposed a binning method based on the average
IEI that would produce a consistent power law exponent of α = 1.5. How-
ever, the average IEI for IEIs below 65 ms in the case shown in Figure 5(b) is
approximately 24 ms, and this choice of bin width yields α = 1.2. This aver-
age IEI is much higher than other previously reported values, which tend to
be on the order of 0.1 ms, because a great deal of activity has been curtailed
by the addition of GABA. Thus, successive avalanches of activity that occur
within less than 65 ms of each other skew the average toward a higher value.
Constructing a histogram of the IEIs in this case reveals that the vast majority
of IEI values fall below 1 ms and that the remaining IEIs are approximately
uniformly distributed above 1 ms, providing further evidence for the above
interpretation of the high mean IEI. This investigation indicates that the type
of critical behavior that can be achieved by manipulating the ratio of excita-
tion to inhibition in the network may differ in some way from that achieved
through self-organization.

The above results and considerations beg the question of what constitutes
an appropriate time bin size. As has been discussed by [58], the approximate
speed of propagation of action potentials through the network, which is con-
sidered to lie in the range of approximately 30 to 300 mm/s, should be taken
into consideration. It should also be noted that this speed is quite different
from the propagation speed of local field potentials (LFPs), which are the
type of activity monitored in the slice experiment by [56]. The aim of the
avalanche analysis is to collect activity from different neurons in the network
that arises from the same causal source. Thus, the time bin should be large
enough that post-synaptic spikes are associated with the pre-synaptic spikes
that contributed to activating them but small enough that successive spikes
that are not causally related are not associated with each other. The activation
of two neighboring electrodes (inter-electrode distance of 200 μm) given the
above propagation speed range may range from approximately 0.5 to 5 ms.
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This indicates that the cutoff value should likely be set closer to 20 ms for
the present recording setup, as this value would correspond to the succes-
sive activation of two electrodes that are separated by a distance equal to
four inter-electrode distances, roughly half of the maximal distance across
the MEA active area, with a low propagation speed of 40 m/s. This cutoff
applied to the present case shown in Figure 5(b) yields an average IEI of 6.2
ms and a power-law exponent of α = 1.4.

4.2 Maturation of iPSC-derived neurons
The neuronal avalanche size distribution of two in vitro neuronal networks
was observed as the network matured. This paper focuses largely on only
one of these networks (Network iA), as the other frequently did not display
enough avalanches for a reliable fitting. As stated previously, no rigorous
analysis was yet applied to classify network as super- or subcritical; rather,
only the goodness of fit of the size distribution to a power law was evaluated
to assess whether the network was in a critical state during each analyzed
recording. Preliminary classification of non-critical cases was performed by
visual inspection. The same analysis was performed with different bin sizes,
as described previously; however, some of the larger bin sizes yielded too
few avalanches for a reliable fitting. The results presented here were obtained
with a bin size of 1 ms. Additionally, it should be noted that the fitting results
across different bin sizes were less consistent than in the case of the two
cortical networks, and so further investigation would be of great value in
confirming the observed behavior described herein.

The fitting results indicate that the network was already in the critical state
when recordings began at DIV 21 (Figure 6(a)) and remained as such until
DIV 42, with some brief deviations or periods of low activity. Many of these
deviations from criticality were during the early recording period, and the
network was stably in the critical state between DIVs 36 and 42. The mean
exponent of the fitted power law distributions in the recordings where the
network was in the critical state was α = 1.84 ± 0.07, which is higher than
the value of 1.5 reported by [56]. From DIV 44 until the final recording on
DIV 56, the network was no longer in the critical state, and a preliminary
visual assessment of the avalanche size distributions indicate that activity
progressed to supercritical (Figure 6(b)) and finally subcritical (Figure 6(c))
during the later recordings. Although no fittings were performed to rigor-
ously assess whether the networks were in either of these states, the plots in
Figure 6 appear to be consistent with this type of behavior.

The observed network did not ultimately settle into a critical state in the
considered timeframe, though it did appear to pass through a period of rel-
atively stable critical behavior. The deviation from criticality is likely due
to the different cell types that arise during the reprogramming of iPSCs,
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(a)

(b)

(c)

FIGURE 6
Probability distribution functions for three representative cases. (a) DIV 21: The fitting indicates
the network is in a critical state, with α = 1.85 (p = 0.13). The power-law fitting result is shown
as a red line. (b) DIV 51: The network appears to be in a supercritical state with a bimodal
distribution. (c) DIV 52: The network appears to be in a subcritical state with an exponential
distribution. In (b) and (c), the dashed red lines correspond to α = 1.85 for comparison with the
distribution shown in (a).

particularly as the proliferation of these cells causes the composition of the
culture to change over time. When differentiating iPSCs into a target cell
type, the presence of other types of cells of the same lineage cannot be
excluded; for example, glial cells are commonly present in iPSC-derived neu-
ronal networks. This is different from networks that have been assessed in
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previous studies on self-organized criticality in neuronal networks, as these
have focused solely on primary cortical networks, which can be prepared with
greater homogeneity. The heterogeneous and time-varying cellular composi-
tion likely produces changes to the signalling environment of the neurons,
which may temporarily push the network away from criticality. Addition-
ally, the neurons assessed here were dopaminergic neurons, which are likely
to show a different course of maturation in terms of criticality than cortical
neurons. It is possible that these types of networks show more complex oscil-
latory behaviors as they mature, or they may eventually settle into a critical
state given enough time. Further work is necessary to capture the expected
time course of the development of the criticality of such networks.

4.3 Future work
In future work, further investigations will be performed with networks manip-
ulated into the critical state through the addition of GABA. This avalanche-
based analysis will be applied in conjunction with other measures describ-
ing the fitness of a dynamic system for computation, including information
and graph theoretical measures. In this line of investigation, it will also be
observed how networks in different dynamical states respond to electrical
stimulation. Such a multifaceted approach will provide better insight into the
mechanisms driving neuronal communication and how certain environments
may better leverage the computational capabilities of neuronal networks. The
characteristics of the networks derived in this way will be used to inform the
development of novel neural network models that more closely resemble their
biological analog.

Further experiments will also be conducted to evaluate the development
of different types of iPSC-derived networks. Thus far, criticality analysis
has been confined to primary cortical networks; understanding how differ-
ent parts of the brain behave in this context is expected to give a broader
understanding of the overall behavior of the brain. This analysis will also be
applied in future experiments on the classification of networks as perturbed
or healthy, in a manner similar to our previous study on Parkinson’s-related
proteinopathy [14]. This type of analysis is expected to be a useful tool for
this type of classification as well as opening doors to better understanding the
mechanisms of action of neurological diseases.

5 CONCLUSION

In this study, a method of classifying neuronal networks as critical or
non-critical was applied to electrophysiological data obtained from four in
vitro neuronal networks, two primary rat cortical networks and two human
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iPSC-derived dopaminergic networks. First, the effect of the time bin size
on the classification results of neuronal avalanche analysis was evaluated.
It was demonstrated that critical behavior is identifiable regardless of the
time bin size, whereas the avalanche size distributions associated with non-
critical behavior are strongly dependent on the size of the time bin. Follow-
ing this investigation, the analytical framework was applied to iPSC-derived
networks to determine whether they were critical or non-critical at different
time points during the course of their development. The preliminary results
reported here demonstrate emerging behavior that does not settle into crit-
icality within the investigated time frame; further work is needed to better
characterize the time course of the development of criticality in the networks
studied in this work and characterize how this affects the network’s suitabil-
ity for computation. Future work will also involve further investigation into
the behaviors of networks that make them well-suited for computation based
on information and graph theoretical approaches to the data analysis. This
work is expected to contribute to the development of models that can recapit-
ulate the desired behaviors and will in turn inform the development of novel
physical computing substrates.
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