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Wireless Sensor Networks (WSN) use many sensor nodes to monitor vari-
ous environmental information in designated areas in real-time, which has 
broad application prospects in many fields and industries. Due to the sen-
sor’s physical fault or technical defect, there are some errors in the collected 
data; therefore, it is necessary to clean and repair the data before they are 
used. This paper proposes a high-dimensional sequential data cleaning 
algorithm for WSNs. The algorithm combines the correlation between dif-
ferent dimensions and the temporal correlation characteristics within the 
same dimension. Firstly, the data is preprocessed, and the abnormal dimen-
sion is determined by combining the prior knowledge and correlation cal-
culation. Then, the algorithm of dynamic programming and speed constraint 
is used to determine the outliers and mark the abnormal dimensions. 
Finally, the autoregressive model with exogenous variables is used to repair 
outliers. Experiments are carried out on a real WSN dataset in this paper. 
The results show that the repair effect of the proposed algorithm is better 
than the single dimension benchmark algorithm.

Keywords: Wireless sensor networks, data cleaning, high-dimensional time 
series, speed constraint, dynamic programming

1 INTroDuCTIoN

With the popularization and development of information technology, wireless 
sensor networks (WSN) are widely used in intelligent monitoring, behavior 
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analysis and other fields[1,2]. A large amount of data accumulated by various 
industries through WSN devices has become the product, providing essential 
data support for big data and artificial intelligence technology[3,4]. These 
data are used for knowledge extraction, application decision-making and 
other intelligent services, so the importance of data quality is beyond 
doubt[5,6].

Due to the physical and technical characteristics of the WSN, such as 
harsh sensor deployment environment, limited network bandwidth, environ-
mental noise interference, and other factors[7,8], there will be a certain 
degree of quality problems in the process of data acquisition, transmission 
and recording[9,10]. The data with quality problems can not accurately rep-
resent the real world, resulting in increased cost and data analysis risk[11]. 
Eliminating anomalies in data and improving data quality can enhance the 
optimization effect of big data and artificial intelligence in data analysis[12].

How to effectively identify and repair anomalies in data has become an 
essential topic in data management[13]. In daily life and industrial field, tem-
perature, humidity, voltage and other data collected by WSN are time-series 
data[14]; in other words, data usually have specific change rules with the 
change of time. Data quality is the core factor of the network. Only high-quality 
data can ensure the effectiveness of WSN services. Therefore, data mining 
technology extracts knowledge from data to serve users[15,16]. Consequently, 
it is necessary to repair the outlier in the original time series collected by the 
sensor, that is, to clean the original data, eliminate the dirty data and improve 
the data quality[17].

At present, the algorithms for cleaning a single time series using correla-
tion characteristics are mainly divided into three aspects: based on smoothing, 
statistics, and constraints[18]. The cleaning algorithm based on smoothing 
can smooth the outlier by adjusting the sliding window and taking part in the 
calculation with given parameters. The standard techniques are Simple Mov-
ing Average (SMA); Exponentially Weighted Moving Average (EWMA). 
Although the time cost of smoothing technology is minimal, it will change the 
original normal data, affecting cleaning accuracy. Statistical-based cleaning 
algorithm cleans data by learning from data[19]. For example, the data clean-
ing algorithm is based on the Hidden Markov Model (HMM). However, this 
algorithm relies on establishing the model and cannot solve continuous errors. 
The constraint-based cleaning algorithm uses the correlation between 
sequences to determine whether the values of lines are abnormal, for example, 
sequence constraints and speed constraints. But the rules are usually provided 
by domain experts, so it is difficult to give a reasonable constraint for the 
dynamic time-series data[20,21].

The research on anomaly detection of high-dimensional time series data has 
made some progress in recent years. Data acquisition is usually completed by 
cooperative wireless sensor equipment groups in practical engineering scenar-
ios; analyzing the correlation between time series of different dimensions can 
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improve the effect and efficiency of data cleaning[22]. The paper[23,24] ana-
lyzed the tasks, algorithms and performance of anomaly detection problems on 
high-dimensional data. The paper[25] proposed a distance-based anomaly 
detection algorithm for high-dimensional datasets. In the paper[26], the con-
cept of a score vector is used to calculate the probability of abnormal parts. The 
paper[27] proposed a latent sequence correlation calculation model based on 
existing work for the anomaly detection of industrial data sequences.

WSN data usually correlates. The data is linked on the time axis, and the 
data of adjacent nodes are related in space[28,29]. Most previous studies 
used the correlation characteristics on the time axis and ignored the spatial 
correlation.

This paper proposes a high-dimensional time series data cleaning (HTD-
Cleaning) algorithm based on correlation assistance analysis for WSN. The 
algorithm combines the correlation between different dimensions and the tem-
poral correlation characteristics within the same dimension. Firstly, the data  
is preprocessed, and the abnormal dimension is determined by combining  
the prior knowledge and correlation calculation; secondly, the algorithm of 
dynamic programming and speed constraint is used to determine the outliers 
and mark the abnormal dimensions; finally, the autoregressive model with 
exogenous variables is used to repair the outliers. In this paper, experiments 
are carried out on a real wireless sensor network dataset collected by 21 
Mica2Dot sensors; the root means square error of the HTD-Cleaning algo-
rithm is about 0.5 times that of other comparison algorithms verify the effec-
tiveness of this algorithm in cleaning high-dimensional time series data. 

Although the time complexity is O N 2( ) and N is the number of time-series 

data nodes, the repair effect of this algorithm is significantly better than other 
comparison algorithms.

The main contributions of this paper are as follows:

1. An algorithm for cleaning high-dimensional sequential data for wireless 
sensor networks is proposed. This algorithm can extract information from 
high-dimensional data for knowledge reasoning by deeply mining the rel-
evant mechanism of high-dimensional time-series data, which is helpful 
for comprehensive anomaly detection and repair of high-dimensional data.

2. This paper verifies that the proposed algorithm performs best repair accuracy 
through experiments on real wireless sensor network time-series datasets.

In section 2, the research problems are introduced, time series, velocity con-
straints, sequence correlation, data cleaning problems and repair results are 
defined, and the algorithm framework is briefly described. In Section 3, the 
cleaning algorithm of high-dimensional sequential data for wireless sensor 
networks is in detail. Section 4, through the experiments on real datasets, com-
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pared with the existing algorithms in terms of repair effect and time cost. 
Finally, in Section 5, the work of this paper is analyzed and summarized.

2 PrelImINArIeS

Definition 1 (Time Series) Time series X x x xn= …1 2, , , , It is a series of con-
tinuous data nodes with timestamp collected by sensor pieces of equipment, 
x d t i ni i i= ( ) ≤ ≤, 1  represents the i-th data node, where di is a numerical 
value, ti means the timestamp corresponding to the value, n is the number of 
time-series data nodes.

Definition 2 (multidimensional Time Series) Multidimensional time series
H X k= { }1 2, X ,..., X , it is a set of K (k > 1) time series, X x x xi i i in= 1 2, ,...,  
represents one time series, i.e., a dimension data, where xi j,  represents the data 
node at j time of the i-th time series.

Definition 3 (Speed Constraint) Given speed constraint S S S wmin max= ( ), , , 

In time series X x x xn= …1 2, , , , any data node x x t t wi j i j, , − ≤  are satisfied 

s
x x

t t
smin

j i

j i
max≤

−
−

≤ , the time series meets the speed constraint S.

Definition 4 (Sequence Correlation) Assumes two-time series Xi  and 
X n nj i j, = , defined in sequence Xi and Xj, the correlation calculation func-
tion is Corr X Xi j, ,( ) ∈[ ]0 1 , the correlation between sequence Xi and Xj is 
determined as follows:

1. Corr X X ci j, ,( ) ∈[ ]1 , then sequence Xi and X j has strong correlation;

2. Corr X X ci j, ,( ) ∈[ ]0 , then sequence Xi  and X jare not relevant.

Definition 5 (WSN oriented High-Dimensional Time Series Data Clean-
ing Problem Definition) For a given k-dimensional time series dataset 
H X n n nk k= { } = = =1 2 1 2,X ,...,X , ,..., , to achieve the following tasks:

1. Design correlation calculation function Corr X Xi j,( ), the correlation 
between any two dimensions in k-dimensions time series is calculated 
and quantified;

2. According to the correlation matrix in the task (1), the abnormal dimension 
is determined on the dataset to be detected in H;

3. The set E of outliers in the abnormal dimension is detected, 

, ,
x x

t t
S or

x x

t t
S x E

i j

i j
min

i j

i j
max i

−
−

−
−

∈  and repair the data nodes in E 

to meet the speed constraint and close to the correct value.
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Definition 6 (repair result Definition) Repair result of time series X is ′X , in 
the window w, the timestamp is defined as ti, the value of the data node xi

fixed to xi
', so that the time series satisfies the speed constraint S, and the 

timestamp remains unchanged after repair.

3  ANomAly DeTeCTIoN AND rePAIr AlgorITHm for HIgH-
DImeNSIoNAl TIme-SerIeS DATA

3.1 overview
An accidental outlier can occur in one or several dimensions of the WSN 
datasets[30,31]. The possible abnormal dimensions can be screened for the 
high-dimensional time series with a known correlation relationship by cal-
culating the significant change of the correlation parameters[32]. However, 
it is still not possible to determine the specific anomaly problem. The main 
reasons are as follows: (1) The time-series correlation is symmetric and 
undirected. When the correlation parameters of two dimensions change, it 
is uncertain which of the two dimensions is abnormal;(2) The location of 
the outliers in the dimension with the anomaly is not recognized, so the 
outlier cannot be accurately repaired.

In this paper, the HTD-Cleaning algorithm for wireless sensor networks is 
proposed. The main idea is to determine the abnormal dimension by using the 
correlation changes between different dimensions, detect and repair the outliers 
through the temporal correlation characteristics within the dimension to clean 
the high-dimensional temporal data of WSN. The algorithm includes four parts: 
data preprocessing, correlation calculation, anomaly detection and anomaly 
repair.

(1) Data preprocessing: Some quality problems in the original data col-
lected by sensor equipment[33,34]. Therefore, in the data preprocessing part, 
timestamp alignment and missing value filling are needed for the original 
time series data, and the processed data are used as the input of the later 
analysis module;

(2) Correlation calculation: firstly, the correlation matrix is generated by 
calculating the correlation of the output data from step (1);

(3) Anomaly detection: this part determines the abnormal dimension 
through the correlation matrix. The high-dimensional time-series correlation 
obtained by prior knowledge can evaluate whether the correlation among the 
measurements in the correlation matrix significantly decreases in this step. If 
the original high correlation of a dimension is reduced considerably, it can be 
considered that there is an outlier within the dimension. For the abnormal 
dimension, the anomaly detection algorithm based on constraint is used to 
determine the outlier, to label the abnormal dimension;

(4) Anomaly repair: through step (3), we get the abnormal dimension 
with labeled information. In this part, using the temporal correlation charac-
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teristics and the minimum modification principle of data cleaning, we use the 
autoregressive model with exogenous variables to repair the outliers.

3.2 Abnormal dimension identification
In the high-dimensional time series data collected by wireless sensor net-
works, there are usually certain relationships between some data dimensions. 
When the data of a particular dimension is abnormal, the abnormal dimen-
sion can be identified by other dimensions in the normal state to assist in 
identifying and correcting outliers.

Since the original data collected by each sensor node may not be collected 
at the same time or at different collection frequencies, and missing values are 
common in time series, the value of time series varies within a small range in 
a certain period of time, the Piecewise Aggregation Approximation (PAA) 
[35,36]can be used. The data of each dimension is processed to facilitate the 
subsequent calculation. At the same time, this step reduces the amount of data 
and is helpful for anomaly detection[37]. As a classical time series recombi-
nation technique, PAA can reduce a sequence of length L to a sequence of 
length ′L , which is usually a factor of L. PAA calculates the reconstructed 
sequence value by the following formula.

 ′
′[ ] = [ ]

= −( )+
′

′

∑x j
L

L
x i

i
L

L
j

L

L
j

1 1

1( ) (1)

In other words, PAA divides the L-length sequence into parts L', the average 
value of each segment is calculated as the new data value of the recombination 
sequence.

For the reconstructed high-dimensional time series H X X X n n nK k= { } = = =1 2 1 2, ,..., , ,...,, 
H X X X n n nK k= { } = = =1 2 1 2, ,..., , ,..., , in this paper, the Pearson correlation coefficient is used to 

describe the correlation between different dimensions. The calculation for-
mula of Pearson correlation coefficient[38] is as follows:

 corr x x
cov x x

x x
1 2

1 2

1 2

,
,( ) =

( )
⋅σ σ

 (2)

Where cov is the covariance between the two dimensions, σx1 and σx2  are the 
variances of X1 and X2, and the correlation coefficient of dimensional data 
is corr x x1 2 1 1, , ,( ) ∈ −[ ]  the greater the absolute value of the correlation 
coefficient of the two dimensions, the stronger the correlation. By collecting 
the original relevant information of the data as prior knowledge, it can help 
determine which dimensions contain outliers.

In the prior knowledge, if the correlation between the two dimensions is 
higher than the threshold c, that is correct x x c1 2,( ) ≥ , the two dimensions are 
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considered highly correlated. If the correlation between the two dimensions 
X1 2, X  decreases significantly, that is, the decline exceeds the threshold d, it 
can be considered that at least one of the two dimensions has an anomaly. The 
proportion of correlation changes can be counted to judge the abnormal 
dimensions more accurately. If more than a certain proportion of high corre-
lation of a certain dimension changes significantly, it can be considered that 
the dimension may have outliers, label the dimension as an abnormal dimen-
sion. Subsequently, the outliers in the dimension are discriminated and 
repaired.

Algorithm 1 shows the steps to determine the abnormal dimension. The 
fourth line of the algorithm checks whether there is a high correlation between 
the two dimensions in the prior knowledge. Suppose the two dimensions have 
a high correlation; the algorithm lines 6-9 check whether the correlation 
between the dimensions has decreased significantly. The algorithm calculates 

Algorithm 1: Correlation Evaluation

Input: high-dimensional time series H array, correlation coefficient matrix 
C, high correlation threshold c, correlation significantly reduced threshold 
d, correlation relationship significantly changed proportion θ
output: suspicious sequence set ε

1. foreach X Hk ∈  do
2.     Initialize correlated ← 0, declined ← 0
3.     foreach X H  do
4.        if C ck j, ≥  then
5.          correlated ← correlated+1

6.          r
cov X Xk j

X Xk j

←
( )

⋅

,

σ σ

7.          if r C dk j< −,  then
8.             declined ←  declined +1
9.          end   
10.       end
11.    end

12.    if 
declined

correlated
≥ θ  then

13.     ε ε←


Xk
14.    end
15. end
16. return ε
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the proportion of high correlation decrease of each dimension in lines 12-14; 
if it exceeds θ, the algorithm considers that there are data anomalies in this 
dimension, and adds it to the set of abnormal dimensions.

3.3 Identification of outliers
This part will elaborate on speed constraints for outlier detection, to label the 
abnormal dimension. The paper[21] defines the value change of time series 

data and the timestamp change at the same time, that is 
x j x i

t j t i

[ ] − [ ]
[ ] − [ ] . Unlike 

the speed constraint for outlier detection and repair in paper[21], this paper 
uses speed constraint for outlier detection. After removing outliers from the 
abnormal dimension, the whole dimension data can meet the speed con-
straint.

Algorithm 2: outlier detection

Input: suspicious sequence x, speed constraint SC S Smin max,( )
output: subscript set of outliers U

1: Initialize anomaly i i normal i i n[ ] ← − [ ] ← − = …1 1 1, , , ,  
2: for j j n= ≤1;  do

3:    for i j i= >1;  do

4:        if S
x x

t t
S and anomaly j anomaly i j imin

j i

j i
max≤

−
−

≤ [ ] > [ ] + − −( )1  
then

5:         anomaly j anomaly i j i[ ] ← [ ] + − −( )1

6:          normal j i[ ] ←
7:       end
8:    endfor
9: endfor

10: ;index anomaly n res= [ ] + −( ) =1 1 1
11: for j j n= ≤2;  do

12:    if anomaly j n j index[ ] + −( ) <  then

13:        index anomaly j n j and res j= [ ] + −( ) =
14:    end
15: endfor

16:U n normal res, , , \← …{ } [ ]{ }1 2

17:return U

In this paper, the dynamic programming algorithm solves the set of outliers 
in the X dimension. X 1 : i[ ]  represents the subsequence of the abnormal 
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dimension time series, and anomaly i[ ] indicates the minimum number of 
data nodes to be deleted to ensure the subsequence X 1 : i[ ] under the condi-
tion of retaining the i-th data node, the speed constraint is satisfied. If two 
data nodes x x i ji j, , ( )< , the speed constraint is satisfied, i.e 

SmaxS
x x

t tmin
j i

j i

≤
−
−

≤ , then delete the data nodes from i+1 to j-1 and keep the 

j-th data nodes and subsequences X 1 : j[ ]  must be satisfied. Then the state 

transition equation is as follows: anomaly anomaly j ij i[ ] = [ ] + − −( )1 . If  

we delete the anomaly j[ ] data nodes, X [1: j] can satisfy the speed con-
straint, and delete j+1 and its subsequent data nodes to make the whole 
sequence meet the speed constraint; that is, we need to delete the 
anomaly j n j[ ] + −( ) data nodes. normal j i[ ] =  is used to recording the 
update path in the state transition process. After the calculation is completed, 
all data nodes under reservation are traced according to normal; that is, in 
the abnormal dimension, normal data nodes are considered correct and 
marked as true. 

In algorithm 2, initializing anomaly ii[ ] = −1  means that X 1,i[ ]  can 
meet speed constrain after deleting previous i-1 data nodes; initializing 
normal i[ ] = −1 indicates the i-th data node will be the first remaining data 
node after deleting anomaly i[ ]  data nodes. Lines 2-7 of the algorithm per-
form state updating, lines 10-14 can find the last data node in the optimal 
solution, and line 16 starts from the last data node and traces all the reserved 
data nodes along normal.

3.4 outliers repair
Paper[19] combines the time characteristics of anomaly detection with the 
minimum modification principle in data cleaning and proposes a repair 
framework IMR based on the autoregressive model with exogenous variables 
(ARX)[38]. The traditional algorithm directly uses the predicted value in 
anomaly detection as the candidate results of repair, which may change the 
data nodes, such as using the Autoregressive Model (AR)[39] or the Autore-
gressive Model With Exogenous Variables (ARX). The algorithm proposed in 
paper[19] considers the temporal correlation between errors and the principle 
of minimum modification in data cleaning; however, the labeled information 
in this paper comes from experts’ manual annotation or highly reliable data 
sources. HTD-Cleaning algorithm can label abnormal dimension data auto-
matically.

Autoregressive Model (AR)

 x c xt

i

p

i t i t
' = + +

=
−∑

1

φ ε  (3)
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Where xt
'  is the predicted value of xt  data nodes, p is the order of the model, 

φi is the parameter of the model, c
i

p

i= −










=
∑µ φ1

1

is a constant, µ  is the 

expectation of the sequence, and εt  is the noise of the sequence, usually 
Gaussian white noise.

Autoregressive Model with Exogenous Variables (ARX)

 x x x xt t

i

p

i t i t i t
' '= + −( ) +

=
− −∑

1

φ ε  (4)

xt
'  is the predicted value of data node xt , and the rest is the same as the AR 

model.
The ARX model’s final prediction result is affected by the observed value  

xt i−  and the predicted value xt i−
'  of the data node before the current data node. 

Usually, the further distance indicates that the data node may be an outlier, if 
the predicted value xt

'  is very different from observed values xt , that is 
x xt t

' − > τ, in which τ  is a pre-defined threshold, the predicted value xt
'  will 

be accepted as the results of cleaning. τ  can be obtained from the statistical 
distribution of the difference between each data node’s predicted and funda-
mental values in the abnormal dimension.

Let X i( ) represent the abnormal dimension in i-th iteration, where X 0( )  
represents the original abnormal dimension of the input. Data nodes labelled 

as true should not be cleaned, i.e xt
0( ) is labelled as true, then x xt t

i0( ) ( )= . The 
steps of the outlier repair algorithm are as follows:

The second line of the algorithm uses the abnormal dimension data X 
and the dimension data in the current iteration round X i( )  to estimate the 
ARX p( ) parameters of the model φ i( ) in this paper, the least square algo-
rithm is used to estimate the parameters. The third line of the algorithm 
mainly calculates the possible repair candidate values of each data node 
based on the model constructed in the previous step, and the fourth line 
selects the only repair candidate as the cleaning result of this round from 
the repair candidate values generated during the last stage according to 
the principle of minimum modification. Lines 5-7 of the algorithm termi-
nate the algorithm’s execution through the maximum number of itera-
tions or convergence conditions. The convergence conditions are as 
follows:

 X X j nj
k

j
k( ) +( )− ≤ =1

1 2τ, , ,...,  (5)
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Algorithm 3: outlier repair

Input: original suspicious sequence x, suspicious sequence with annota-
tion information X 0( ) . 
output: sequence after cleaning X i( )  

1: for i to MaxNumItetations←   do 

2:    φ i iParameterEstimation X X( ) ( )← ( ),

3:    x CandidateCalculation X Xi i'( ) ( ) ( )← ( ), ,0 φ

4:    X AssessmentResult X X xi k i+ ( ) ( )← ( )1 , , '

5:    if Convergence X Xi i( ) +( )( ), 1  then 

6:         normal j i[ ] ←
7:    end

8:    i i← +1  

9: endfor

10:return X i( )  

4 exPerImeNT

4.1 experimeal environment and evaluation criteria
In this section, the experimental evaluation will be carried out on the real 
wireless sensor networkdataset according to the corresponding evaluation 
standards. The experimental results will be compared with the existing repair 
algorithms, including the representative EWMA algothm based on smooth-
ing and the SCREEN algorithm based on speed constraint.

Experimental environment
This paper uses Java language to implement each part in the following envi-
ronment. The processor is 2.21Ghz Intel Core i7, and the memory is 8GB.

Experimental data
The dataset of the Intel laboratory is used in this paper (http://db.ail.mit.edu/
labdata/labdata.html). Intel lab data includes time-series data of four attri-
butes collected by 54 sensors: humidity, temperature, illumination and volt-
age. In this paper, theemperature data of 21 sensors are selected randomly, 
and some data nodes are intercepted in each dimension. The first 10K data 
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nodes are used as training data; The last 6K data nodes test the algorithm 
effect. Using the algorithm proposed by the paper[40], a certain proportion of 
the sequence is randomly selected as the abnormal sequence in the test data. 
Some data nodes are randomly chosen in each bizarre line to replace. The 
replacement value is any value between the minimum and maximum values 
of the arrangement. The replaced data node is considered as the outlier of 
injection error.

Evaluation criterion
The metrics used in this paper include:
(1) Root Mean Square Error[41]. Order xtruth  as the truth value of time series, 
repair. as the repaired time series data, the RMS error is as follows:

 

∆ x x
n

x xtruth repair

i

n

i
truth

i
repair,( ) = −( )

=
∑1

1

2

 

(6)

RMS measures the similarity between the repair results and the true values. 
The smaller the RMS, the closer the repair results are to the true values, the 
more accurate the repair results are.
(2) Wrong Distance[21]. That is, the distance between the dirty data (observed 
value) and the real data. Order xdirty  as the observed value of time series, the 
Error Distance is as follows:

 

∆ fault truth dirty

i

n

i
dirty

i
truthx x x x, ( )( ) = −

=
∑

1

2  (7)

(3) Abnormal Detection Precision Rate P, Abnormal Detection Recall Rate R. 
The confusion matrix is used to define this metric, as shown in Table 4.1. 

Then the definition of P and R are as follows:

 P TP TP FP= +( )/  (8)

Abnormal detection Normal detection

Actual exception TP FN

Actually normal FP TN

TABLE 1
Confusion matrix
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 R TP TP FN= +( )/  (9)

4.2 experimental results
This paper randomly assigns three abnormal dimensions in 21 test dimen-
sions and the high correlation threshold is 0.8. The root mean square error 
results, error distance results and time cost results of various repair algo-
rithms under different abnormal rates (outliers /total data nodes) and different 
data volumes are provided. Correlation analysis is performed with the test 
data to obtain the correlation data between the various dimensions according 
to the algorithm flow before the experiment starts. This dimension correlation 
data is used in subsequent abnormal dimension detection. The specific exper-
imental results are shown below.

Table 4.2 lists the P and R of the abnormal dimension identification steps 
on Intel laboratory data. A recall ratio of 1.0 indicates no missing dimension 
where an anomaly occurred. Meet the expectation of anomaly detection to 
reduce the missed detection. At the same time, the higher precision shows 
that the suspicious dimension selected in this step has high accuracy.

Table 4.3 shows the P and R of the outlier detection steps under different 
outlier rates for 2.5k data. With the increase of the abnormal rate, the P 
increases gradually and the R decreases. The experimental results meet the 
expectation of anomaly detection algorithm: false detection is more accept-
able than missing detection.

Figure 1 shows the error distance under different anomaly rates for 2.5k 
data. The convergence threshold of the algorithm is 0.3 and the model param-
eter of ARX (P) is P = 3. With the increase of abnormal rate, there are more 
and more outliers in the dataset, so the distance beeen dirty value and real 
data is larger.

data set Precision ratio p recall ratio r

Intel lab data 0.72 1.0

TABLE 2
Correlation analysis results

Abnormal rate 15% 25% 40%

Precision ratio p 0.4062 0.5455 0.7018

Recall ratio R 1.0 1.0 0.50

TABLE 3
Detection effect of different abnormal rates
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Figure 4.2 shows the RMS of each algorithm under different anomaly rates 
for 2.5k data. The convergence threshold of the algorithm is 0.3 and the 
model parameter of ARX (P) is P = 3. With the increase of anomaly rate, the 
RMS errors of the three algorithms are on the rise. Because the algorithm 
based on smoothing predicts the current time value through the historical 

FIGURE 1
The distance between dirty value and actual value under different error rates

FIGURE 2
Root mean square error of each algorithm under different error rates
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value and takes the predicted value as the repair value, a large number of 
original normal data will be modified, so the RMS error of the EWMA algo-
rithm is the highest. However, the algorithm based on speed constraint only 
restores the outliers to the boundary values of speed constraints, but it does 
not have the problem of over modification, so the RMS error of the screen 
algorithm is slightly lower. Firstly, the HTD-Cleaning algorithm uses speed 
constraints to detect outliers and uses the ARX model for iterative cleaning. 
Compared with the constraint boundary value of the screen algorithm, the 
HTD-Cleaning algorithm can repair outliers more thoroughly. Therefore, 
with the increase of anomaly rate, the RMS error of the HTD-Cleaning algo-
rithm is always the lowest; that is to say, the repair effect is the best.

Figure 4.3 shows each algorithm’s root mean square error under different 
data volumes when the anomaly rate is 15%. The convergence threshold of 
the algorithm is 0.3 and the model parameter of ARX (P) is P = 3. Under the 
fixed anomaly rate, with the increase of data volume, the proportion of nor-
mal data is larger, the RMS errors of the three algorithms are gradually 
reduced. The RMS error of the EWMA algorithm is still the highest due to 
the over-modified data,. The screen algorithm still has the speed constrained 
boundary value problem, so the RMS error is slightly lower. The HTD-Clean-
ing algorithm will automatically label the abnormal dimension data. With the 
increase of the proportion of normal data, more data labeled as true can par-
ticipate in the training of the ARX model so that the RMS error decrease 
trend will be faster than the comparison algorithm.

Figure 4.4 shows the time cost of each algorithm under different anomaly 
rates with 2.5k data. The convergence threshold of the algorithm is 0.3 and 

FIGURE 3
Root mean square error of each algorithm under different data volume
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the model parameter of ARX (P) is P = 3. With the increase of anomaly rate, 
the time cost of algorithm -based smoothing and algorithm -based constraint 
tends to be flat. EWMA algorithm predicts the current time value by histori-
cal value and repairs the current value. Although the abnormal rate gradually 
increased, the amount of data processed by the EMWA algorithm remains 
unchanged. Hence, the time cost of the EWMA algorithm tends to be stable 
and the lowest. The HTD-Cleaning algorithm relies on the automatically 
labeled information of the abnormal dimension when repairing the outliers. 
With the increase of the abnormal rate, the proportion of the data marked as 
true decreases, and the number of rounds of iterative cleaning is bound to 
increase. The time cost of the HTD-Cleaning algorithm increases dramati-
cally. In contrast, the SCREEN only traverses the abnormal dimension data 
once, and its time cost is positively correlated with the speed constraint value. 
Therefore, the time cost of the SCREEN algorithm is slightly higher than that 
of the EWMA algorithm and much lower than that of the HTD-Cleaning 
algorithm.

Figure 4.5 shows the time cost of each algorithm under different data vol-
umes when the abnormal rate is 15%. The convergence threshold of the algo-
rithm is 0.3 and the model parameter of ARX (P) is P = 3. EWMA and 
SCREEN algorithms only need to traverse the abnormal dimension data 
once. With the increase of data volume, the time cost of the two algorithms 
increases, but the trend is slow. The SCREEN algorithm detects outliers 
through speed constraints; the speed constrained boundary nodes are used to 

FIGURE 4
Time cost of each algorithm under different error rates
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repair them. The EWMA uses only the predicted value as the repair value, so 
the EWMA algorithm has the lowest time cost. HTD-Cleaning algorithm 
uses iterative cleaning in data cleaning, so the time cost increases rapidly 
with the increase of data volume.

Figure 4.6 shows the root mean square error of each algorithm under dif-
ferent anomaly rates with 2.5K data, and the convergence threshold of the 

FIGURE 5
Time cost of each algorithm under different data volume

FIGURE 6
Root mean square error of each algorithm under different error rates
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algorithm is 0.3 and the model parameter of ARX (P) is P = 3. Similar to the 
trend in Figure 4.2, root mean square error increases gradually with the 
increase of anomaly rate. The smooth-based SWAB algorithm has the highest 
RMS due to excessively changing the original correct value and removing the 
weight setting compared to EWMA algorithm. The Sequential algorithm 
only considers the limitation of data changes between two adjacent points to 
clean data, and it ignores the timestamp change. Variance algorithm cleans 
data by limiting the difference change in the specified window (the variance 
constraint window in this paper is 10), and it is insensitive to the error value 
with small deviation from the correct value. As can be seen from the figure, 
since variance constraint considers data in a window, more data can partici-
pate in the repair of abnormal values, and the RMS of Variance algorithm is 
slightly lower than that of Sequential algorithm. The HTD-Cleaning algo-
rithm detects outliers according to the speed constraint, and then repairs out-
liers by iterative method, avoiding excessive changes to the original data and 
repairing outliers thoroughly at the same time.

Figure 4.7 shows the root mean square error of each algorithm under dif-
ferent data amounts when the anomaly rate is 20%, the convergence threshold 
of the algorithm is specified as 0.3 and the model parameter of ARX (P) is P 
= 3. Similar to the trend in Figure 4.3, RMS of each algorithm gradually 
decreases with the increase of data volume. The HTD-Cleaning algorithm 
will automatically mark abnormal dimension data. As the proportion of nor-
mal data increases, more data marked True can participate in the training of 
ARX model, so the RMS error decrease trend is faster than that of the com-

FIGURE 7
Root mean square error of each algorithm under different data volume
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parison algorithm. The Variance algorithm also tends to decline faster, 
because more correct data enables more accurate Variance constraints on data 
within the same window. The SWAB algorithm always has the problem of 
excessively changing the correct value. The Sequentail algorithm only calcu-
lates numerical changes between adjacent data points, so the RMS of the 
SWAB algorithm and the Sequential algorithm tends to be flat as the data 
volume changes.

Figure 4.8 shows the time cost and root mean square error of HTD-Clean-
ing algorithm with different model order P when the anomaly rate is 15% and 
the data volume is 3K. The higher the order P, the more historical data will 
predict the current data node. Due to the iterative strategy and minimum mod-
ification principle, the HTD-Cleaning algorithm can obtain lower RMS error 
even if P = 1; however, the time required for iteration increases rapidly, so too 
large a P can not bring significant improvement of root mean square error. In 
other words, the accuracy performance of different model order P is the same, 
but higher-order will bring more time cost.

Figure 4.9 shows the time cost and root mean square error of the HTD-
Cleaning algorithm based on the different convergence thresholds τ  when 
the anomaly rate is 15%, p=3 and the data volume is 3K. If the convergence 
threshold τ  is small, the algorithm needs to run more iterations to converge, 
and the time cost will increase. However, the RMS error does not increase 
significantly if the convergence threshold is further reduced (from 0.1 to 
0.05), but the time cost increases rapidly. With the increase of the conver-
gence threshold, the time cost is gradually reduced, and the RMS error 

FIGURE 8
Algorithm time cost and root mean square error under d ifferent order P
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increases, so the convergence threshold τ  can be used as a trade-off between 
time cost and repair effect.

Figure 4.10 shows the time cost and root mean square error of the HTD-
Cleaning algorithm under different maximum iterations when the anomaly 

FIGURE 9
Algorithm time cost and root mean square error under different convergence threshold theta

FIGURE 10
Algorithm time cost and root mean square error under different maximum number of iterations
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rate is 15%, p=3 and the amount of data is 2.5K. Theoretical analysis shows 
that the algorithm converges in two cases, namely, reaching the maximum 
number of iterations or satisfying Formula (5), but a maximum number of 
iterations is still needed to reduce the algorithm time. In other words, the 
algorithm can stop when the maximum number of iterations is reached, and 
the algorithm does not converge. According to Figure 4.10, the maximum 
number of iterations of the intermediate size can already obtain a good exper-
imental effect, and the effect at this time is close to the cleaning result of the 
algorithm convergence. With the increase of the maximum number of itera-
tions, the time cost of the algorithm rises gradually. However, when the algo-
rithm converges, the time cost tends to be stable with the increase of the 
maximum number of iterations, which further illustrates the necessity of set-
ting the maximum number of iterations.

5 CoNCluSIoN

Considering that the high-dimensional time series collected by wireless sensor 
networks often have a specific correlation, and the time series of a single sensor 
has strong temporal correlation characteristics, this paper proposes an HTD-
Cleaning algorithm for wireless sensor networks. Firstly, the abnormal dimen-
sion is determined according to prior knowledge, and then anomaly detection is 
carried out in the abnormal dimension; then, the abnormal dimension is labeled. 
Finally, the abnormal dimension with labeled information is repaired iteratively 
according to the principle of minimum modification. In this paper, the proposed 
algorithm is verified on a specified wireless sensor network dataset. The exper-
imental results show that, compared with other existing cleaning algorithms, 
the HTD-Cleaning algorithm has the lowest root mean square error under each 
abnormal rate and data volume and has the best repair effect. At the same time, 
the time cost of each cleaning algorithm is evaluated. Compared with other 
cleaning algorithms, which only traverse the data volume once, the proposed 
algorithm has a higher time cost because of the iterative cleaning.

Although this paper has achieved phased results in WSN data cleaning, 
due to the complexity of the network itself and many difficulties in data 
cleaning, the following work is worth further discussion.

Cleaning algorithm design. Since the HTD-Cleaning algorithm adopts the 
autoregressive model with exogenous variables, the model has obvious direc-
tionality. We can consider caching the time series data collected at a specific 
time, modeling and cleaning the data from the positive and negative aspects 
of the time sequence.

Build cleaning tools. In addition to providing a core cleaning algorithm, it 
is also crucial to build WSN data cleaning tools. Building a cleaning tool suit-
able for WSN datasets can be critical in the next stage, considering the cur-
rent mainstream relational data cleaning tools.
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