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Rough sets, which are a pair of lower and upper approximations, and
rules induced from them are described by an approach using cover-
ings in an information table with similarity of values. Lots of possi-
ble coverings on a set of attributes are derived in an information table
with incomplete information, whereas only one covering is derived in
an information table with complete information. New difficulty due to
computational complexity is not caused in any information table with
incomplete information because of the lattice structure that the fam-
ily of possible coverings has. Twofold rough sets are derived, which
consist of certain rough sets and possible rough sets, using only the
minimum and maximum possible coverings. These two possible cover-
ings are obtained from the minimum and the maximum possible indis-
cernibility relations which are equal to the intersection and the union
of indiscernibility relations derived from possible tables. Four kinds of
rules with accuracy and support are induced from the twofold rough
sets. The computational complexity for the number of objects in incom-
plete information tables is the same as in complete information tables.

Keywords: Twofold rough sets, Rule induction, Incomplete information, Cover-
ings, Indiscernibility relations

1 INTRODUCTION

Rough sets by Pawlak [1] classify objects into granules by using equality of
data characterizing them. The rough sets are well known as an applicable tool
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to inducing rules from data in various fields [2, 3]. The traditional rough sets
are typically used when complete information is obtained and data similari-
ties do not have to be considered. Data similarities, however, are common in
the real world. Furthermore, data incompleteness appears everywhere in the
real world. Thus, it is not sufficient for information processing of the actual
data unless we handle similar data and incompletely represented data.

For data with similarities, the degree of similarity is used under a threshold
[4]. A restriction such as min-max transitivity should not be imposed on the
degree, because the restriction is contrary to human intuition [5]. The degree
of similarity is asymmetric, because the degree of object o which is similar
to object o′ is not always the same as the degree of o′ which is similar to o.

When incompletely represented data is obtained, there are four approaches
to handling it. The first is to replace the data by a plausible value. The plau-
sible value is specified by statistical methods [6]. As a simple example, the
most frequently occurring value, the average value and so on are used. The
second is to give the data equality without touching the data itself, which was
proposed by Kryszkiewicz [7] and afterwards was extended [8,9]. The third is
to use maximal consistent blocks [10], where the data is contained in blocks.
The three approaches keep only one possibility among lots of possibilities of
incompletely represented data. This means that information loss will occur.
This information loss causes poor results [11, 12].

The other approach is to apply possible world semantics to an information
table with incompletely obtained data, which was proposed by Lipski [13] in
the field of incomplete databases. The approach deals with all possibilities
that any incompletely obtained data has. No information loss occurs. We,
therefore, adopt this approach.

We develop rough sets and rule induction using possible indiscernibility
relations. A possible indiscernibility relation is a possible world in possible
world semantics in our approach, although a possible table is a possible world
in Lipski. Categorical values can be handled using possible tables [14,15], but
continuous values cannot because the number of possible tables is infinite for
the continuous values [16]. To use possible indiscernibility relations means
that the categorical values and the continuous values are handled in the same
framework.

The structure of the paper is as follows. In the next section, an approach
using the covering obtained from the indiscernibility relation on a set of
attributes is described to derive rough sets and rules in a complete information
table. The subsequent section develops the approach in an incomplete infor-
mation table under possible world semantics. The fourth section describes
algorithms of obtaining rough sets and rules in this approach. The last sec-
tion describes conclusions.
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2 ROUGH SETS AND RULE INDUCTION USING COVERINGS IN
COMPLETE INFORMATION TABLES

A complete information table is expressed with three components: U , V (=
∪a∈AT V (a)), and AT which are a set of objects, called the universe, the value
set of attribute a, and a set of attributes where a ∈ AT : U → V (a), respec-
tively. Indiscernibility relation I δ

A
∗ meaning that objects are indiscernible on

set A ⊆ AT of attributes under threshold δA is:

I δ
A = {(o, o′) ∈ U × U | SI MA(o, o′) ≥ δA}, (1)

= ∩a∈A I δ
a , (2)

where SI MA(o, o′) expresses at what degree objects o and o′ are similar sim-
ilar in terms of A and δA is the similarity threshold for the values that A takes
and is (δa1 , . . . , δal ) when A = {a1, . . . , al}.

SI MA(o, o′) = min
a∈A

SI Ma(o, o′), (3)

SI Ma(o, o′) = sim(a(o), a(o′)), (4)

where sim(a(o), a(o′)) is the similarity degree of attribute value a(o) to a(o′),
which is given by experts such that it is reflexive, asymmetric, and not tran-
sitive.

Proposition 1. If δ1A ≥ δ2A, then I δ1
A ⊆ I δ2

A , where δ1A ≥ δ2A is ∀a ∈
A δ1a ≥ δ2a.

Proof. Straightforward.

Under I δ
A, indiscernible class K (o)δA

† of o on A is expressed in:

K (o)δA = {o′ | (o, o′) ∈ I δ
A}, (5)

= ∩a∈A K (o)δa . (6)

Family Kδ
A of indiscernible classes on A is:

Kδ
A = ∪o∈U {K (o)δA}. (7)

∗ Unless confusion may arise, A and/or δ are omitted for symbols.
† This class is not a tolerance class. See [17, 18] for tolerance classes.
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Clearly, ∪K∈KA K = U . According to Zakowski [19], KA is a covering, which
is unique for A. Under KA, minimal description MdKA(o) of object o, for-
mulated by [20], is:

MdKA(o) =
{K ∈ KA | o ∈ K ∧ ∀K ′ ∈ KA(o ∈ K ′ ∧ K ′ ⊆ K ⇒ K = K ′)}. (8)

Set C FriendKA (o) of close friends of o with respect to KA, proposed by [21],
is:

C FriendKA (o) = ∪K∈MdKA(o)K . (9)

Maximal description M DKA(o) of object o, described by [21, 22], is:

M DKA(o) =
{K ∈ KA | o ∈ K ∧ ∀K ′ ∈ KA(o ∈ K ′ ∧ K ′ ⊇ K ⇒ K = K ′)}. (10)

Example 1. Let complete information table CT be denoted in TABLE 1.
The universe consists of six objects 1, . . . , 6. a1 and a2 are attributes. Let

CT
U a1 a2

1 f y
2 a z
3 c y
4 e w

5 b z
6 d x

TABLE 1
Complete information table CT

similarity degree sim(v, v′) on V (a1) = {a, b, c, d, e, f } be

sim(v, v′) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0.2 0.7 0.6 0.2 0.3
0.3 1 0.7 0.7 0.2 0.4
0.9 0.7 1 0.2 0.3 0.3
0.9 0.8 0.2 1 0.7 0.7
0.1 0.2 0.3 0.7 1 0.9
0.3 0.4 0.3 0.7 0.7 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Indiscernibility relation Ia1 under δa1 = 0.75 is:

Ia1 = {(1, 1), (2, 2), (3, 2), (3, 3), (4, 1), (4, 4), (5, 5), (6, 2), (6, 5), (6, 6)}.
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Indiscernible classes that make up covering Ka1 on a1 are:

K (1)a1 = {1}, K (2)a1 = {2}, K (3)a1 = {2, 3},
K (4)a1 = {1, 4}, K (5)a1 = {5}, K (6)a1 = {2, 5, 6}.

Under these indiscernible classes, covering Ka1 is:

Ka1 = {{1}, {2}, {2, 3}, {1, 4}, {5}, {2, 5, 6}}.

Under covering KA, lower approximation apr
A
(T ) and upper approxima-

tion apr A(T ) of target set T for A are:

apr
A
(T ) = {o ∈ U | K (o) ∈ KA ∧ K (o) ⊆ T }, (11)

apr A(T ) = {o ∈ U | K (o) ∈ KA ∧ K (o) ∩ T �= ∅}. (12)

Proposition 2. If δ1A ≥ δ2A on A, then apr δ1
A

(T ) ⊇ apr δ2
A

(T ) and

apr δ1
A (T ) ⊆ apr δ2

A (T ), where δ1A ≥ δ2A is ∀a ∈ A δ1a ≥ δ2a and the
approximations with superscripts δ1 and δ2 show ones under thresholds δ1
and δ2, respectively.

Proof. Straightforward from ∀o K (o)δ1
A ⊆ K (o)δ2

A under δ1A ≥ δ2A,

Example 2. Let target set T be specified by restriction a2 = z, which is
denoted by Ta2=z . Ta2=z = {2, 5} is obtained in information table CT of
Example 1. Based on formulae (11) and (12) under the covering in Exam-
ple 1, lower and upper approximations are:

apr
a1

(Ta2=z) = {2, 5},
apra1

(Ta2=z) = {2, 3, 5, 6}.

The following rules are obtained from the lower and upper approxima-
tions. Let target set TR be determined by restriction R.

� When o ∈ apr
A
(TR), rule A = A(o) → R holds consistently: namely, its

accuracy is 1 and its support is |K (o)A|/|U |.
� When o ∈ (apr A(TR)\apr

A
(TR)), rule A = A(o) → R holds incon-

sistently with accuracy |K (o)A ∩ TR|/|K (o)A| and support |K (o)A ∩
TR|/|U |.

Example 3. Let go back to Example 2. Objects 2 and 5 are included
in apr

a1
(Ta2=z). Two rules are derived. Rule a1 = a → a2 = z holds
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consistently with accuracy 1 and support 1/6 and rule a1 = b → a2 = z
holds consistently with accuracy 1 and support 1/6. Objects 3 and 6 are
included in (apra1

(Ta2=z)\apr
a1

(Ta2=z)). Two rules are derived. Rule a1 =
c → a2 = z holds inconsistently with accuracy 1/2 and support 1/6 and rule
a1 = d → a2 = z holds inconsistently with accuracy 2/3 and support 1/3.

3 ROUGH SETS AND RULE INDUCTION USING POSSIBLE
COVERINGS IN INCOMPLETE INFORMATION TABLES

An incompletely obtained value is expressed in a disjunctive set of possible
value, where the missing value of attribute a is expressed with {v | v ∈ V (a)}.

There are lots of possible coverings derived from an incomplete infor-
mation table [23, 24]. Despite this some authors deal with only one cov-
ering [25, 26], which is questionable. One possible indiscernibility relation
creates one possible covering. We obtain a lot of possible indiscernibility
relations on set A of attributes in an incomplete information table. F P IA, the
family of possible indiscernibility relations, is:

F P IA = {P I | P I = SIA ∪ (o, o′) ∧ (o, o′) ∈ P(M P IA\SIA)}, (13)

where P I is a possible indiscernibility relation and P(M P IA\SIA) denotes
the power set of M P IA\SIA.

M P IA = {(o, o′) ∈ U × U |
∀a ∈ A∃v ∈ a(o)∃v′ ∈ a(o′)sim(v, v′) ≥ δa}, (14)

SIA = {(o, o′) ∈ U × U |
(o = o′) ∨ (∀a ∈ A∀v ∈ a(o)∀v′ ∈ a(o′)sim(v, v′) ≥ δa)}, (15)

where pair (o, o′) ∈ SIA is called a certain one on A, whereas pair (o, o′) ∈
(M P IA\SIA) a possible one on A.

Proposition 3. F P IA constitutes the lattice based on set inclusion where
P IA,min, the minimum element, is equal to SIA and P IA,max , the maximum
element, is equal to M P IA.

Proof. Straightforward from formulae (13)–(15).

Proposition 4. P IA,min = ∩P IA and P IA,max = ∪P IA where P IA is a pos-
sible indiscernibility relation on A.
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Proof. Straightforward from formula (13).

Let F PTA be the family of possible tables on A.

F PTA = {PT | ∀o ∈ U ∀a ∈ A a(o)PT = e ∧ e ∈ a(o)I T }, (16)

where PT is a possible table and I T is an incomplete information table, and
a(o)PT and a(o)I T are values of attribute a in PT and I T , respectively. A
possible indiscernibility relation does not always correspond to a possible
table, but the following propositions hold.

Proposition 5. If PT IA ∈ F PT IA, then PT IA ∈ F P IA, where PT IA is a
indiscernibility relation derived from a possible table on A of incomplete
information table I T and F PT IA is the family of PT IA.

Proof. Let PT be a possible table on A of incomplete information table I T .
Indiscernibility relation PT IA of PT is expressed in {(o, o′) ∈ U × U | ∀a ∈
A sim(a(o)PT , a(o′)PT ) ≥ δa} from formulae (1). (3), and (4). a(o)PT ∈
a(o)I T and a(o′)PT ∈ a(o′)I T . Thus, PT IA ∈ F P IA from formulae (13)–
(15).

Proposition 6. P IA,min = ∩PT IA, P IA,max = ∪PT IA, where P IA,min and
P IA,max are the minimum and the maximum possible indiscernibility rela-
tions, and PT IA is the indiscernibility relation derived from a possible table
PTA using formulae (1), (3), and (4).

Proof. P IA,min consists of the certain pairs where two object are cer-
tainly indiscernible. If (o, o′) ∈ P IA,min , (o, o′) ∈ SIA. This means ∀P IA ∈
F P IA (o, o′) ∈ P IA from formula (13). From proposition 5, if PT IA ∈
F PT IA, then PT IA ∈ F P IA. Thus, (o, o′) ∈ ∩PT IA from proposition 5. If
(o, o′) ∈ ∩PT IA, ∀PT IA ∈ F PT IA (o, o′) ∈ PT IA. This means that (o =
o′) ∨ (∀a ∈ A∀v ∈ a(o)∀v′ ∈ a(o′)sim(v, v′) ≥ δa) is satisfied with (o, o′);
namely, (o, o′) ∈ SIA. Thus, (o, o′) ∈ P IA,min .
If (o, o′) ∈ P IA,max , (o, o′) ∈ M P IA. (o, o′) satisfies ∀a ∈ A∃v ∈ a(o)∃v′ ∈
a(o′)sim(v, v′) ≥ δa of formula (14). This means ∃PT IA (o, o′) ∈
PT IA. Thus, (o, o′) ∈ ∪PT IA. If (o, o′) ∈ ∪PT IA, ∀a ∈ A∃v ∈ a(o)∃v′ ∈
a(o′)sim(v, v′) ≥ δa is satisfied with (o, o′). This means ∃P IA (o, o′) ∈ P IA.
Thus, (o, o′) ∈ P IA,max .

Example 4. Let incomplete information table I T be denoted in TABLE 2.
{b, e} is the disjunctive set that means b or e.
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I T
U a1 a2

1 {a} {y}
2 {b, e} {z}
3 {a} {w, y}
4 {d} {x, z}
5 {c, f } {z}

TABLE 2
Incomplete Information Table I T

Under formula (16), four possible tables PT1, PT2, PT3 and PT4 on
attribute a1 are derived from incomplete information table I T , as is shown
in TABLE 3.

PT1

U a1 a2

1 {a} {y}
2 {b} {z}
3 {a} {w, y}
4 {d} {x, z}
5 {c} {z}

PT2

U a1 a2

1 {a} {y}
2 {e} {z}
3 {a} {w, y}
4 {d} {x, z}
5 {c} {z}

PT3

U a1 a2

1 {a} {y}
2 {b} {z}
3 {a} {w, y}
4 {d} {x, z}
5 { f } {z}

PT4

U a1 a2

1 {a} {y}
2 {e} {z}
3 {a} {w, y}
4 {d} {x, z}
5 { f } {z}

TABLE 3
Four possible tables PT1, PT2, PT3 and PT4 derived from I T on a1

Let sim(u, v) be the same in Example 1. Under δa1 = 0.75, set S Ia1 of
certain pairs is derived from I T using formula (15):

{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5)}.

Set M P Ia1\SIa1 of possible pairs is derived using formulae (14) and (15):

{(2, 5), (4, 2), (5, 1), (5, 3)}.
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Under formulae (13) – (15), family F P Ia1 of possible indiscernibility rela-
tions is:

F P Ia1 = {P I1, · · · , P I16}.

The sixteen possible indiscernibility relations are:

P I1 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5)},
P I2 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5)},
P I3 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(4, 2)},
P I4 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(5, 1)},
P I5 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(5, 3)},
P I6 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5), (4, 2)},
P I7 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5), (5, 1)},
P I8 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5), (5, 3)},
P I9 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(4, 2), (5, 1)},
P I10 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(4, 2), (5, 3)},
P I11 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(5, 1), (5, 3)},
P I12 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5), (4, 2), (5, 1)},
P I13 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5), (4, 2), (5, 3)},
P I14 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5), (5, 1), (5, 3)},
P I15 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),
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(4, 2), (5, 1), (5, 3)},
P I16 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5), (4, 2), (5, 1), (5, 3)}.

Indiscernibility relations PT I1, PT I2, PT I3, and PT I4 derived from possi-
ble tables PT1, PT2, PT3, and PT4, respectively, are:

PT I1 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(4, 2), (5, 1), (5, 3)},
PT I2 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(5, 1), (5, 3)},
PT I3 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(4, 2)},
PT I4 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 1), (4, 3), (4, 4), (5, 5),

(2, 5)}.

Relationship between the possible indiscernibility relations and the indis-
cernibility relations from possible tables is represented by PT I1 = P I15,
PT I2 = P I11, PT I3 = P I3, and PT I4 = P I2; namely, four possible indis-
cernibility relations P I2, P I3, P I11, and P I15 have the corresponding possi-
ble tables. P I1 and P I16 are the minimum and the maximum possible indis-
cernibility relations, respectively. The relationships represented by P I1 =
∩i=1,4 PT Ii and P I16 = ∪i=1,4 PT Ii hold.

Possibly indiscernible class P K (o)A, j of object o in P I j ∈ F P IA is:

P K (o)A, j = {o′ | (o, o′) ∈ P I j ∧ P I j ∈ F P IA}, (17)

= ∩a∈A P K (o)a, j . (18)

P K (o)A,min , the minimum possibly indiscernible class on A, and
P K (o)A,max , the maximum possibly indiscernible class, are:

P K (o)A,min = {o′ | (o, o′) ∈ P IA,min}, (19)

= ∩ j=1,h{o′ | (o, o′) ∈ P I j ∧ P I j ∈ F P IA}, (20)

P K (o)A,max = {o′ | (o, o′) ∈ P IA,max }, (21)

= ∪ j=1,h{o′ | (o, o′) ∈ P I j ∧ P I j ∈ F P IA}, (22)
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where h is the number of possible indiscernibility relations. Under formula
(18),

P K (o)A,min = ∩a∈A P K (o)a,min, (23)

P K (o)A,max = ∩a∈A P K (o)a,max . (24)

Proposition 7. If P IA,k ⊆ P IA,l , then ∀o ∈ U P K (o)A,k ⊆ P K (o)A,l .

Proof. If (o, o′) ∈ P IA,k , o′ ∈ P K (o)A,k from formula (17). (o, o′) ∈ P IA,l

from P IA,k ⊆ P IA,l , and also o′ ∈ P K (o)A,l from formula (17). Thus, this
proposition holds.

This proposition means that the family of possibly indiscernible classes
for any object also has a lattice structure for set inclusion with the minimum
and maximum elements. The minimum element for object o, the minimum
possibly indiscernible class of o, is P K (o)A,min derived from P IA,min . The
maximum element for o, the maximum possibly indiscernible class of o, is
P K (o)A,max derived from P IA,max .

Example 5. Possibly indiscernible classes, minimum possibly indiscernible
classes, and maximum possibly indiscernible classes on a1 of objects are
derived applying formulae (17), (20), and (22) to possible indiscernibility
relations of Example 4. For object 1,

P K (1)a1, j = {1, 3} f or j = 1, . . . , 16,

P K (1)a1,min = {1, 3}, P K (1)a1,max = {1, 3}.

For object 2,

P K (2)a1, j = {2} f or j = 1, 3, 4, 5, 9, 10, 11, 15,

P K (2)a1, j = {2, 5} f or j = 2, 6, 7, 8, 12, 13, 14, 16,

P K (2)a1,min = {2}, P K (2)a1,max = {2, 5}.

For object 3,

P K (3)a1, j = {1, 3} f or j = 1, . . . , 16,

P K (3)a1,min = {1, 3}, P K (3)a1,max = {1, 3}.
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For object 4,

P K (4)a1, j = {1, 3, 4} f or j = 1, 2, 4, 5, 7, 8, 11, 14,

P K (4)a1, j = {1, 2, 3, 4} f or j = 3, 6, 9, 10, 12, 13, 15, 16,

P K (4)a1,min = {1, 3, 4}, P K (4)a1,max = {1, 2, 3, 4}.

For object 5,

P K (5)a1, j = {5} f or j = 1, 2, 3, 6,

P K (5)a1, j = {1, 5} f or j = 4, 7, 9, 12,

P K (5)a1, j = {3, 5} f or j = 5, 8, 10, 13,

P K (5)a1, j = {1, 3, 5} f or j = 11, 14, 15, 16,

P K (5)a1,min = {5}, P K (5)a1,max = {1, 3, 5}.

One possible covering is derived from one possible indiscernibility rela-
tion. PKA, j , the possible covering obtained from possible indiscernibility
relation P IA, j , is:

PKA, j = ∪o∈U {P K (o)A. j }. (25)

Proposition 8. Family F PKA of possible coverings is a lattice for � where
� is expressed as F E � F E ′ if ∀E ∈ F E ∃E ′ ∈ F E ′ ∧ E ⊆ E ′.

Proof. Straightforward from Proposition 7.

Minimum possible covering PKA,min on A and maximum possible cover-
ing PKA,max are:

PKA,min = ∪o∈U {P K (o)A,min}, (26)

= ∪o∈U {∩i=1,h P K (o)A,i }, (27)

PKA,max = ∪o∈U {P K (o)A,max}, (28)

= ∪o∈U {∪i=1,h P K (o)A,i }, (29)

where h is the number of possible coverings.

Using formulae (8)–(10), we can obtain the family of possible minimum
description, the family of possible sets of close friends, and the family of
possible maximum descriptions from the family of possible coverings. The
family of possible maximum descriptions keeps a lattice structure, but the
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family of possible minimum description and the family of possible sets of
close friends do not.

Example 6. Under formula (17), possibly indiscernible classes in
each possible indiscernibility relation P Ia1, j with j = 1, . . . , 16 are
obtained from example 5. For example, in P Ia1,1, P K (1)a1,1 = {1, 3},
P K (2)a1,1 = {2}, P K (3)a1,1 = {1, 3}, P K (4)a1,1 = {1, 3, 4}, P K (5)a1,1 =
{5}. In P Ia1,16, P K (1)a1,16 = {1, 3}, P K (2)a1,16 = {2, 5}, P K (3)a1,16 =
{1, 3}, P K (4)a1,16 = {1, 2, 3, 4}, P K (5)a1,16 = {1, 3, 5}.
Under formula (25), each possible covering PKa1, j with j = 1, . . . , 16 is
obtained as follows:

PKa1,1 = {{1, 3}, {2}, {1, 3, 4}, {5}},
PKa1,2 = {{1, 3}, {2, 5}, {1, 3, 4}, {5}},
PKa1,3 = {{1, 3}, {2}, {1, 2, 3, 4}, {5}},
PKa1,4 = {{1, 3}, {2}, {1, 3, 4}, {1, 5}},
PKa1,5 = {{1, 3}, {2}, {1, 3, 4}, {3, 5}},
PKa1,6 = {{1, 3}, {2, 5}, {1, 2, 3, 4}, {5}},
PKa1,7 = {{1, 3}, {2, 5}, {1, 3, 4}, {1, 5}},
PKa1,8 = {{1, 3}, {2, 5}, {1, 3, 4}, {3, 5}},
PKa1,9 = {{1, 3}, {2}, {1, 2, 3, 4}, {1, 5}},

PKa1,10 = {{1, 3}, {2}, {1, 2, 3, 4}, {3, 5}},
PKa1,11 = {{1, 3}, {2}, {1, 3, 4}, {1, 3, 5}},
PKa1,12 = {{1, 3}, {2, 5}, {1, 2, 3, 4}, {1, 5}},
PKa1,13 = {{1, 3}, {2, 5}, {1, 2, 3, 4}, {3, 5}},
PKa1,14 = {{1, 3}, {2, 5}, {1, 3, 4}, {1, 3, 5}},
PKa1,15 = {{1, 3}, {2}, {1, 2, 3, 4}, {1, 3, 5}},
PKa1,16 = {{1, 3}, {2, 5}, {1, 2, 3, 4}, {1, 3, 5}}.

Family F PKa1 has the lattice structure shown in FIGURE 1.

Relationship between the minimum and maximum possible coverings and
coverings from possible tables is represented by:

PKA,min = ∪o∈U {∩i=1,h K (o)A,i }, (30)

PKA,max = ∪o∈U {∪i=1,h K (o)A,i }, (31)

where K (o)A,i is the class of o in the covering derived from PT IA,i using
formulae (5) and (7) and h is the number of possible tables.
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FIGURE 1
Lattice structure of family F PKa1 of possible covering

Under possible covering PKA, j , two approximations of target set T are:

apr
A, j

(T ) = {o ∈ U | P K (o) ⊆ T ∧ P K (o) ∈ PKA, j }, (32)

apr A, j (T ) = {o ∈ U | P K (o) ∩ T �= ∅ ∧ P K (o) ∈ PKA, j }. (33)

Proposition 9. If PKk � PKl for possible indiscernibility cov-
erings PKk, PKl ∈ F PKA, then apr

A,k
(T ) ⊇ apr

A,l
(T ) and

apr A,k(T ) ⊆ apr A,l(T ).

Proof. If PKk � PKl , ∀P K ∈ PKk∃P K ′ ∈ PKl P K ⊆ P K ′. Thus, this
proposition holds.

Proposition 9 shows that the families of approximations are also lattices.

Example 7. Under T = {2, 5}, for example, applying formulae (32) and (33)
to PKa1,1 and PKa1,16, we obtain apr

a1,1
(T ) = {2, 5}, apr

a1,16
(T ) = {2},

apra1,1(T ) = {2, 5}, and apra1,16(T ) = {2, 4, 5}.

Aggregating approximations in each possible covering, we obtain four
approximations: certain lower approximation Sapr

A
(T ) of T , possible lower

approximation Papr
A
(T ), certain upper approximations Sapr A(T ), and
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possible upper approximation Papr A(T ).

Sapr
A
(T ) = {o ∈ U | ∀PK j ∈ F PKA o ∈ apr

A, j
(T )}, (34)

Papr
A
(T ) = {o ∈ U | ∃PK j ∈ F PKA o ∈ apr

A, j
(T )}, (35)

Sapr A(T ) = {o ∈ U | ∀PK j ∈ F PKA o ∈ apr A, j (T )}, (36)

Papr A(T ) = {o ∈ U | ∃PK j ∈ F PKA o ∈ apr A, j (T )}. (37)

From these approximations, we obtain two rough sets: certain rough sets
(Sapr

A
(T ), Sapr A(T ))‡ and possible rough sets (Papr

A
(T ), Papr A(T )).

Namely, the rough sets are twofold under incomplete information, as is shown
in [14]. Using Proposition 9, we transform the four approximations into:

Sapr
A
(T ) = apr

A,max
(T ), (38)

Papr
A
(T ) = apr

A,min
(T ), (39)

Sapr A(T ) = apr A,min(T ), (40)

Papr A(T ) = apr A,max (T ), (41)

where apr
A,min

(T ) and apr A,min(T ) are the approximations from the
minimum possible covering, and apr

A,max
(T ) and apr A,max (T ) are the

approximations from the maximum possible covering.

Similarly to the case of handling missing values [14], the following propo-
sition holds.

Proposition 10. Sapr
A
(T ) ⊆ Papr

A
(T ) ⊆ T ⊆ Sapr A(T ) ⊆ Papr A(T ).

Proof. From formulae (34)–(37), Sapr
A
(T ) ⊆ Papr

A
(T ) and Sapr A(T ) ⊆

Papr A(T ). Clearly, Papr
A
(T ) ⊆ T ⊆ Sapr A(T ). Thus, this proposition

holds.

Example 8. We go back to Example 7. Using formulae (38) – (41), we derive

Sapr
a1

(T ) = {2},
Papr

a1
(T ) = {2, 5},

Sapra1
(T ) = {2, 5},

Papra1
(T ) = {2, 4, 5}.

‡ This expression is an interval set, as is addressed in [15]



478 MICHINORI NAKATA et al.

Twofold rough sets, certain and possible rough sets, are:

(Sapr
a1

(T ), Sapra1
(T )) = ({2}, {2, 5}),

(Papr
a1

(T ), Papra1
(T )) = ({2, 5}), {2, 4, 5}).

Under minimum possibly indiscernible class P K (o)A,min and maximum
possibly indiscernible class P K (o)A,max , the following formulae are obtained
from formulae (38)–(41):

Sapr
A
(T ) = {o | P K (o)A,max ⊆ T }, (42)

Papr
A
(T ) = {o | P K (o)A,min ⊆ T }, (43)

Sapr A(T ) = {o | P K (o)A,min ∩ T �= ∅}, (44)

Papr A(T ) = {o | P K (o)A,max ∩ T �= ∅}. (45)

These formulae show that approximations obtained in this approach are equal
to those derived using the minimum and the maximum possibly indiscernible
classes P K (o)A,min and P K (o)A,max .

Proposition 11. There exist possible tables from which P K (o)A,min and
P K (o)A,max can be derived.

Proof. From formulae (14), (15), (19), and (21), P K (o)A,min = {o′ ∈
U | (o = o′) ∨ (∀a ∈ A ∀v ∈ a(o)∀v′ ∈ a(o′)sim(v, v′) ≥ δa)} and
P K (o)A,max = {o′ ∈ U | ∀a ∈ A ∃v ∈ a(o)∃v′ ∈ a(o′)sim(v, v′) ≥ δA}.
v and v′ are a possible value in a(o) and a(o′), respectively. Thus, this
proposition holds.

Proposition 11 justifies direct derivation using minimum and maximum
possible indiscernible classes from the perspective of possible world seman-
tics.

Example 9. From example 5, for example, P K (5)a1,min = {5} and
P K (5)a1,max = {1, 3, 5}. P K (5)a1,min and P K (5)a1,max can be derived from
possible tables PT3 and PT4 in example 4, and PT1 and PT2, respectively.

Lastly, we touch the case that target set T contains incompleteness. Let
o ∈ T be specified by restriction R.

Sapr
A
(T ) = apr

A,max
(STR), (46)

Papr
A
(T ) = apr

A,min
(PTR), (47)
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Sapr A(T ) = apr A,min(STR), (48)

Papr A(T ) = apr A,max (PTR), (49)

where STR and PTR are sets of objects that certainly and possibly satisfy
restriction R, respectively. Note that Papr

A
(T ) ⊆ Sapr A(T ) does not hold

when T contains incompleteness.

Example 10. In incomplete information table I T of Example 4, let T be
specified by restriction a2 = z. STa2=z = {2, 5} and PTa2=z = {2, 4, 5}. The
possible minimum and maximum coverings on a1 are PKa1,1 and PKa1,16 in
Example 6. Under formulae (46) – (49),

Sapr
a1

(T ) = {2},
Papr

a1
(T ) = {2, 5},

Sapra1
(T ) = {2, 5},

Papra1
(T ) = {2, 4, 5}.

The following rules are derived from twofold rough sets that consist of the
four approximations. Let T be specified by restriction R.

� When o ∈ Sapr
A
(T ), rule A = A(o) → R certainly holds with accuracy 1

and support |P K (o)A,min|/|U |. The rule is a certain and consistent one.
� When o ∈ (Papr

A
(T )\Sapr

A
(T )), rule A = A(o) → R possibly holds

with accuracy 1 and support |P K (o)A,max ∩ PTR|/|U |. The rule is a pos-
sible and consistent one.

� When o ∈ (Sapr A(T )\Sapr
A
(T )), rule A = A(o) → R certainly

holds with accuracy |P K (o)A,min ∩ STR|/|P K (o)A,max | and support
|P K (o)A,min ∩ STR|/|U |. The rule is a certain and inconsistent one.

� When o ∈ (Papr A(T )\Papr
A
(T )\Sapr A(T )), rule A = A(o) → R pos-

sibly holds with accuracy |P K (o)A,max ∩ PTR|/|P K (o)A,max | and support
|P K (o)A,max ∩ PTR|/|U |. The rule is a possible and inconsistent one.

Example 11. Let go back to Example 10. Object 2 is included in Sapr
a1

(T ).
From this, rule (a1 = b ∨ a1 = e) → a2 = z certainly holds with accuracy 1
and support 1/5. Object 5 is included in (Papr

a1
(T )\Sapr

a1
(T )). Rule (a1 =

c ∨ a1 = f ) → a2 = z possibly holds with accuracy 1 and support 1/5.
Object 5 is also included in (Sapra1

(T )\Sapr
a1

(T )). Rule (a1 = c ∨ a1 =
f ) → a2 = z certainly holds with accuracy 1/3 and support 1/5. Object 4
is included in (Papra1

(T )\Papr
a1

(T )\Sapra1
(T )). Rule a1 = d → a2 = z

possibly holds with accuracy 1/2 and support 2/5.
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4 ALGORITHMS FOR CALCULATING APPROXIMATIONS AND
RULES

Four kinds of rules are derived from lower and upper approximations. This
means the key point of performance is in computational complexity of deriv-
ing approximations.

The algorithm deriving a set of rules in a complete information table is as
follows:

Algorithm 1 to derive approximations and rules in a complete infor-
mation table
Input: U, V, AT, A, R, δa for a ∈ A, sim(u, v) for u, v ∈ V (a)
Output: A = A(o) → R for o ∈ apr

A
(TR),

A = A(o) → R for o ∈ (apr
A
(TR)\apr A(TR))

Begin
Step 1:

for each a ∈ A do
Compute Ia

end
Step 2:

for each o ∈ U Compute K (o)A

Step 3: Compute TR satisfying R
Step 4: Compute apr

A
(TR), apr A(TR)

Step 5: Compute A = A(o) → R for o ∈ apr
A
(TR),

A = A(o) → R for o ∈ (apr
A
(TR)\apr A(TR))

End

Let n and m be the number of objects in U and the number of attributes
included in A, respectively. We consider the computational complexity in the
worst case. For example, the maximum number of elements in the covering
is n. This is the worst case. First, the computational complexity to obtain Ia

is O(n2). Thus, Step 1 has O(n2 ∗ m). The computational order to derive
K (o)a from Ia is O(n2). K (o)A are derived using K (o)a . Thus, Step 2 has
O(n2m). In Step 3 taget set TR is specified under restriction R. Each object
is checked for whether it satisfies the restriction or not. Thus, Step 3 has
O(n). In Step 4, each object in K (o)A is checked whether it is or not in TR

for all objects in U . Thus, Step 4 has O(n2). In Step 5, a rule is derived from
each object in approximations obtained in Step 4. Thus, Step 5 has O(n).
As a whole, Step 2 is the most time consuming. Thus, Algorithm 1 has the
computational complexity O(n2m).

Next, we describe Algorithm 2 in an incomplete information table.
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Algorithm 2 to calculate approximations and rules in an incomplete
information table
Input: U, V, AT, A, R, δa for a ∈ A, sim(u, v) for u, v ∈ V (a)
Output: A = A(o) → R for o ∈ apr

A,max
(STR),

A = A(o) → R for o ∈ (apr
A,min

(PTR)\apr
A,max

(STR)),
A = A(o) → R for o ∈ (apr A,min(STR)\apr

A,max
(STR)),

A = A(o) → R for o ∈ (apr A,max (PTR)\apr
A,min

(PTR)
\apr A,min(STR))

Begin
Step 1:

for each a ∈ A do
Compute P Ia,min, P Ia,max

end
Step 2:

for each o ∈ U Compute P K (o)A,min, P K (o)A,max

Step 3: Compute STR, PTR satisfying R
Step 4: Compute apr

A,max
(STR), apr

A,min
(PTR),

apr A,min(STR), apr A,max (PTR)
Step 5: Compute

A = A(o) → R for o ∈ apr
A,max

(STR),
A = A(o) → R for o ∈ (apr

A,min
(PTR)\apr

A,max
(STR)),

A = A(o) → R for o ∈ (apr A,min(STR)\apr
A,max

(STR)),
A = A(o) → R for o ∈ (apr A,max (PTR)\apr

A,min
(PTR)

\apr A,min(STR))
End

In Step 1, P Ia,min and P Ia,max are derived using formulae (14) and
(15). The computational complexity is O(n2). In Step 2, P K (o)a,min and
P K (o)a,max are calculated using formulae (19) and (21). P K (o)A,min and
P K (o)A,max are derived from formulae (23) and (24). Thus, the computa-
tional complexity is O(n2m). In Step 3, STR and PTR are sets of objects
that certainly and possibly satisfy restriction R, respectively. Thus, the com-
putational complexity is O(n). In Step 4, apr

A,max
(STR), apr

A,min
(PTR),

apr A,min(STR), and apr A,max (PTR) are derived using formulae (42)–(45).
Thus, the computational complexity is O(n2). In Step 5, a rule is derived
from each object in four approximations obtained in Step 4. Thus, Step 5
has O(n). As a whole, Step 2 is the most time consuming like Algorithm 1.
Thus, Algorithm 2 has the computational complexity O(n2m), which is the
same as Algorithm 1. Namely, rough sets in incomplete information tables
have the same computational complexity for the number of objects as ones
in complete information tables.
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Cao et al. describe an algorithm of calculating approximations for the case
of dealing with missing values under possible equivalence classes [27]. The
computational complexity of our approach is the same as that of Cao et al. In
addition, Cao et al. show that parallel computing can be used to overcome the
computational complexity of Step 2. The Introduction of parallel computing
is expected to play an important role in improving efficiency.

5 CONCLUSIONS

We have described rough sets and rule induction based on coverings in infor-
mation tables with similarity of values. The similarity degree of values char-
acterizing objects is reflexive, asymmetric, and not transitive. In a complete
information table, the covering on a set of attributes is unique. Two kinds of
rules are induced from lower and upper approximations that correspond to
the inclusion and intersection of granules to a target set.

In an incomplete information table, lots of coverings, called possible cov-
erings, are derived on a set of attributes. The family of possible coverings
is a lattice with the minimum and maximum elements. This means that this
family does not newly cause difficulty due to computational complexity for
obtaining rough sets. This is also true for the family of possible maximum
description, but not for the family of possible minimum description and the
family of possible sets of close friends.

Four approximations are derived using only the minimum and maximum
possible coverings that are derived from the minimum and maximum pos-
sible indiscernibility relations, which are equal to the intersection and the
union of indiscernibility relations from possible tables, respectively. The four
approximations produce the twofold rough sets: certain rough sets and pos-
sible rough sets. These approximations are equal to those derived using the
minimum and the maximum possibly indiscernible classes. These classes can
be also obtained from possible tables. This justifies the approach.

From the twofold rough sets, we obtain four kinds of rules with accuracy
and support. The computational complexity is the same order of the number
of objects as in a complete information table.

Further research is to first conduct experiments using actual data. This
approach is then extended to handle more actual data in the following direc-
tions. One is to develop an approach with an incomplete information table
with ordered domains. Ordered values often appear in the real world. For
example, the age of a person, the price of an item, etc. [28]. The other is
to handle incomplete information expressed in a possibility distribution. As
shown in Zadeh [29], the possibility distribution is suitable for expressing
vague values in the real world.
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