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Artificial spin ice is a magnetic metamaterial showing particular
promise as a novel substrate for unconventional computing. While sim-
ulations are invaluable for investigating new computational substrates,
results must be robust to the noise and disorder of the physical world for
device realisation. Here we investigate the computational robustness of
artificial spin ice towards fabrication disorder. Using an evolutionary
search, we explore different geometries of artificial spin ice for robust
computation. We show that by neglecting to consider disorder in the
search, we obtain geometries that suffer greatly when disorder is intro-
duced. We then demonstrate that by explicitly including disorder as part
of the evolutionary search process, we are able to discover novel geome-
tries that are robust against disorder. We also find that these geometries
perform well on new instances of disorder, and when they fail, we see
signs of graceful degradation.
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1 INTRODUCTION

In the welcoming realm of simulation, where all behaves as its theory dic-
tates, it is often easy to design perfect solutions, machines, components;
which function exactly as desired. But, as we move our ideas from theory
to practice, we are met by the cold hard world of reality, which is one of
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manufacturing defects, thermal noise and faulty components. These aberra-
tions, discrepancies between the theoretical scenario and the physical actual-
ity, lead to variation or disorder in the otherwise identical components.

For computing devices to be useful they must have some level of robust-
ness, a resistance or invariance to the disorder of the physical world. In clas-
sical computing, disorder and noise is remedied with the digital abstraction,
thresholding values to either 0 or 1. While this increases the robustness of
these devices it comes at the cost of increased resources and thus vastly
decreases its computational efficiency [21]. Further robustness can be gained
through the use of checksums or replicating components and aggregating
their output through voting [19]. Both of these add redundancy and require
addition processing, further reducing the computational efficiency.

In contrast to the top-down style of choosing a computing paradigm and
imposing it on your substrate of choice, material computation [27] tries to
first discover useful phenomena naturally present in a substrate and exploit
them directly for computation. As a result, we do not incur the extra resource
cost of layering on abstraction levels to restrain the computation.

A particularly promising substrate is artificial spin ice (ASI) [25]. ASI
is a magnetic metamaterial displaying a wide range of emergent behaviour,
including ferromagnetic and anti-ferromagnetic ordering [26] and phase tran-
sitions [2,18] . Its rich behaviour, in conjunction with the extensive tunabilty,
makes it a prime candidate for material computation [8, 11, 15]. If this com-
putation is to be harnessed for a ASI-based device, then it must be robust to
the disorder accrued in the fabrication process.

This paper is organised as follows. Section 2 gives an introduction to ASI,
their use in computation, and how disorder may arise in them. Section 3
briefly outlines the classical approach to managing disorder in the field of
engineering and how this contrasts with the philosophy of material computa-
tion. In section 4 we detail how we evaluate and evolve ASI geometries. First,
we perform a novelty search without disorder and then evaluate the effects
of disorder on the discovered geometries. Secondly, we perform a novelty
search where disorder is considered as part of the search. Section 5 contains
the results and analysis of the two evolutionary searches. Finally, in section 6
we make our concluding remarks.

2 ARTIFICIAL SPIN ICE

ASI is a substrate consisting of interacting nanomagnets [25]. The state of
an ASI is the collective state of all its constituent nanomagnets. The state of
a magnet is determined by the state of its neighbours and any other external
stimuli.
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The magnets in an ASI are mono-domain and bi-stable. When the magnets
are sufficiently small, it is always energetically favourable for the internal
spins of a magnet to be aligned, meaning we can consider each magnet as
a single spin vector. Furthermore, the shape of the magnet is elongated such
that this spin vector will always align along this stretched axis. Together these
two properties allow us to consider the artificial spin of each magnet to be a
binary variable expressing which direction the aggregate of the internal spins
points along the stretched axis.

The artificial spin of a magnet can change or ‘flip’ given sufficient encour-
agement from its neighbouring magnets, an externally applied magnetic field,
or stochastically due to temperature. The coercive field hk of a magnet is the
minimum amount of magnetic field felt by the magnet that will cause it to
flip. One view of this flipping is to think of the magnet as ‘wanting’ to be in
the lowest energy state as possible. It achieves this by aligning itself as much
as possible with the sum of the magnetic fields acting on it, providing it has
the required energy to do so.

ASI systems display exotic properties when considered as a metamaterial.
A metamaterial consists of units or building blocks, analogous to the atoms in
a bulk material. Using this analogy, we can consider the ‘material’ properties
arising from the configurations of these units. A metamaterial perspective
of ASI zooms out from the individual magnets, and looks at the large scale
patterns and phenomena similar to that of a bulk material. The difference
being that these phenomena and material properties can be tuned easily by
altering the configuration of the constituent magnets.

The specific arrangement and orientations of the magnets in an ASI is
referred to as the ASI geometry. Changing the geometry of an ASI has pro-
found effects on its large scale metamaterial properties. As an example we
can consider the Square ASI geometry shown in Figure 1(a), one of the
most simple and well-studied ASI geometries. The Square ASI exhibits anti-
ferromagnetic behaviour, meaning the spins in the system tend towards lin-
ing up in a chequerboard pattern causing net demagnetised regions, shown
as large white regions in Figure 1(c). If we make a small adjustment to
the Square geometry, rotating every magnet by 45◦, we obtain the Pinwheel
geometry (Figure 1(b)). Now, the magnets self-organise into ferromagnetic
patterns, expressed by large regions of coherent magnetisation, shown as
blocks of uniform colour in Figure 1(d)). These are just two examples of
the wealth of emergent phenomena that can be achieved through tuning the
ASI geometry.

2.1 Computing with ASI
ASI is an increasingly promising substrate for computation [7, 8, 15].
It is of particular interest for material computation, due to exhibiting
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(a) Square geometry (b) Pinwheel geometry

(c) Square emergence (d) Pinwheel emergence

FIGURE 1
(a) & (b) Examples of well-studied ASI geometries. (c) & (d) Corresponding emergent phenom-
ena associated with each of the geometries. Here spins have been averaged into a single spin per
vertex to make the emergent properties clearly visible. An inset in the bottom right corner shows
the definition of a vertex in the two geometries. White regions indicate a net magnetisation of
zero, i.e., the spins cancel out.

self-organisation and rich emergent behaviour arising from its simple binary
elements. For computation, we consider the ASI as a dynamical system. It
can be perturbed with magnetic fields as a means of providing input to the
system. An output from the system can be obtained by reading off the states
of the magnets in the system, or by some aggregation of these states.

Following this methodology, Reservoir Computing (RC) [9,20] is an obvi-
ous and natural choice for a suitable computational paradigm. RC takes some
candidate computational substrate, perturbs it with input, then applies a lin-
ear readout layer to the observable state of the system to perform some func-
tion or task. Tasks include classification, regression and time series predic-
tion [23, 29]. Often the readout is applied frequently as the substrate is being
perturbed, though it is also possible to take a one-shot approach and only
measure after the full input sequence [1,6]. As the linear readout has no mem-
ory or ability to compute non-linear functions, any memory or non-linearity
required to solve the particular computational task must arise from the sub-
strate.

To perform computation, RC relies on the substrate to provide a rich
response to input. Hence, the substrate must be capable of rich dynamics,
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and specifically it must have rich dynamics under the chosen input encoding.
For instance, if you have a classification problem where you want to group
inputs into 10 different bins, but the substrate is only capable of terminating
in 5 different states, then clearly you cannot solve the problem [3]. Similarly,
if your system is producing a very high number of different output states,
it may be too sensitive to noise. It is then of interest to be able to tune the
number of states a substrate produces, or even investigate that it is capable of
producing ‘enough’ unique responses to input.

As a rich response to input is crucial for material computing, it is useful
to have a means of quantifying the behaviour of a substrate to determine its
suitability. One way to quantify and categorise the dynamics of an ASI is to
count the number of different states or ‘outputs’ produced by the ASI, as it
responds to different inputs. Jensen et al. [12] use this state count measure to
investigate how the dynamics of an ASI change with respect to the strength
of an external global field, acting as the input to the system.

In our previous work, we showed how the geometry of an ASI can be tuned
through use of an Evolutionary Algorithm (EA) to obtain different number of
unique states visited over the trajectory of the ASI [22]. Though such stud-
ies have focused on investigating the ASI for computation through use of
simulation, the goal is computation in materio.

2.2 ASI Manufacture
Disorder in an ASI is accumulated in the manufacturing process. An example
of a typical process is as follows: ASI structures are fabricated using a lift-off
electron beam lithography (EBL) process. First a resist mixture is prepared
on a wafer and the desired nanomagnetic pattern is transferred onto the resist
through EBL exposure. Permalloy (Ni80Fe20) is then deposited onto the wafer
though electron beam evaporation, followed by a thin coating of aluminium
to prevent oxidation. The final step is lift-off where a chemical removal agent
and ultrasonic agitation is used to strip off all but the nanomagnetic islands.
An example of an ASI fabricated in this way can be seen in Figure 2.

Disorder can arise due to material impurity, the finite precision of the EBL
or through the sample coming into contact with contaminants through han-
dling or otherwise. In this instance disorder presents itself as a slight variance
on the size, shape or composition of each nanomagnet. Though small, these
alterations can have a significant impact on the behaviour of the metamate-
rial.

3 DISORDER AND ROBUST COMPUTATION

Disorder can be found both within a system, such as the timing variations of
transistors within the same chip [4], as well as between systems, e.g., devices
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FIGURE 2
A scanning electron microscope image of a Pinwheel ASI (Figure 1(b)) produced at the NTNU
NanoLab for a recent experiment on clocking protocols in ASI [13].

produced in the same production batch having slightly different performance.
Given that any physical device must realise its computation through the oper-
ating of physical components, disorder in these physical components may
adversely affect the computation.

A common approach to dealing with disorder in the fields of engineering
and conventional computer science, is to minimise disorder to the point at
which it has no meaningful effect on the behaviour of the system. This is
achieved by working within certain tolerances and pushing these tolerances
with ever more complex, highly specialised and sensitive manufacturing pro-
cesses, e.g., developments in lithography [5].

In material computation, importance is placed on not constraining your
substrate to conform to some preconceived computational model [27]. Ideally
it should be possible to configure or interact with the substrate in such a way
that the effects of disorder are reduced. This is preferable to an engineered
solution, which may add additional overhead or restrict the behaviour of the
substrate.
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FIGURE 3
Input encoding: input bit strings are converted into a time series of field applications. Each field
application follows one full period of a sine wave. The bit determines the angle at which the field
is applied relative to the ASI, where zero is an angle of 0◦ and one is an angle of 90◦.

FIGURE 4
Through applying different inputs to an ASI and recording the final state we can build up a
lookup table or truth table to understand the function a given ASI geometry is performing. From
this the state count metric can be calculated.

Alternatively disorder need not be assumed a hindrance. In fact, it has been
shown that in some non-linear dynamical systems, both electronic and bio-
logical, a certain amount of noise can improve sensitivity [28]. In this sense,
disorder can be seen as just another phenomenon to exploit with material
computing.

We refer to an object’s ability to maintain performance in an imperfect
or unexpected environment as its robustness. Evolutionary Robotics, another
field where simulations are often a necessary precursor to physical demon-
stration, uses the concept of a reality gap to describe how that which was
developed in simulation may not function correctly when translated into the
physical world. Jakobi et al. [10] show that a robotic controller trained in
simulation can perform better when controlling a real robot if noise is added
to the simulation, thus reducing the reality gap.

4 METHODS

4.1 State Count Metric
For our evaluation of dynamics, we use a length n sequence of bits as input.
In our input encoding, each bit corresponds to perturbing an ASI, with one
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cycle of a sinusoidal global field. 0 is mapped to a cycle with a field angle of
0◦, while 1 is mapped to a field angle of 90◦. Figure 3 shows a 4-bit input,
and the corresponding series of field applications it is mapped to.

We evaluate the system on every possible length n bit sequence, and record
the final state of the system after each sequence (Figure 4). The state count is
then the number of unique final states we observe after applying the different
inputs. As we have a finite number of possible inputs which we exhaustively
search, the state count measure is the cardinality of the range of the function
computed by the ASI.

State count can be used as a descriptor of the intrinsic computational prop-
erties of the ASI. For a state count s where s << n we have an n-bin classi-
fier. When s = n we have a system with perfect (likely non-linear) memory,
that is, all n-bits of input can be recovered by observing the final state of
the system. Between the two extremes there is a mixed regime where the
substrate exhibits some classification power and some memory [11].

4.2 flatspin Simulations
We use the flatspin ASI simulator [14] to determine the dynamical properties
of an ASI geometry. flatspin allows us to obtain the trajectory of an ASI under
a given series of field applications in reasonable time, making evolutionary
search feasible.

In flatspin, disorder is expressed as a small random variation on the switch-
ing threshold hk of the magnets in the simulated ASI. The modified switching
threshold h′

k is sampled from the normal distribution N (hk, d · hk) where d
is a parameter to decide the strength of the disorder. h′

k is sampled indepen-
dently for each magnet, and remains constant throughout the simulation. In
this work we will use either d = 0% when simulating without disorder, or
d = 4% when simulating with disorder. The value 4% is used as it was found
as a rough estimate of the true disorder resulting from our manufacturing
process [16].

While the disorder d is kept constant, we can supply different random
seeds to flatspin in order to obtain different samples of switching thresholds.
We will refer to these different samples as different instances of disorder.
Between the different instances, the overall disorder in an ASI will remain
similar but will be distributed differently throughout the system.

4.3 Evolving ASI Geometries
Previously, we have set out a representation and methodology for evolving
ASI geometries [22], which we will make use of here. Starting from a single
magnet, a generative, deterministic algorithm uses a set of tiles to build a
geometry. In this way the same geometry can be grown to different sizes by
varying the number of iterations for which the growth process is run.
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FIGURE 5
Three example tile-sets and the corresponding geometry they produce. The top tile-set produces
the Square ASI geometry, the middle tile-set produces the Ising ASI geometry and the bottom
tile-set produces a novel geometry.

Within our framework, an ASI geometry is represented as an ordered list
of 2-magnet tiles. Each tile contains one origin magnet that is always at the
centre of the tile and 0◦ rotation (w.r.t the tile), and a second free magnet that
can be anywhere in the tile and have any rotation. The tiles can be thought
of as stencils, we select a tile and position and rotate it such that the origin
magnet perfectly overlaps a magnet already in the system. We can then ‘draw’
a magnet with the position and rotation of the free magnet. To generate a
geometry, we start with one magnet, apply each tile in order to any magnets
in the system to create a set of new magnets. Each new magnet is added to
the geometry, provided its distance to its nearest neighbour is within a given
tolerance. This process is repeated until either the desired number of magnets
is reached, or no more magnets can be placed and the geometry converges.
Full pseudocode of this process and the tile application process can be found
in [22].

Figure 5 shows some examples of tile sets and the corresponding geome-
tries they produce. We can see that this method can not only reproduce classi-
cally studied structures such as the Square and Ising geometry, but also create
novel and complex geometries with more organic structures. Further exam-
ples of the structures that can be produced and animations showing how they
are built can be seen at https://s.ntnu.no/comet-papers-ijuc2023.

By specifying the maximum number of tiles for each geometry in the EA,
the complexity of the produced geometries can be controlled. Geometries
with more tiles can produce a greater variety of designs, but it comes at the
cost of increasing the difficulty of optimising the geometry, and increases
the chance of producing malformed geometries, i.e., the generative process
terminates prematurely before the requisite number of magnets are produced.
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Additionally, the magnets in a tile can be imbued with symbols to achieve
a greater diversity of geometries. For a tile application to occur, the symbol
of the tile’s origin magnet must match the symbol of the magnet of which the
tile is being applied to. These symbols can be parameterised, such as being
affected by the angle of the magnet, which aids in breaking symmetry.

Variation in the EA is achieved through mutation of the tiles, either
through adding and deleting tiles from the geometry, or modifying the posi-
tion and angles of magnets withing a tile. In addition, a crossover randomly
selects tiles from two geometries to produce a new geometry.

As our interest is not in forcing ASI into a predetermined mode of com-
putation, but to explore the inherent computational properties of ASI, we do
not steer our evolutionary search towards a particular state count. We encour-
age it to explore a breadth of possibilities in the search space. Practically,
this means searching using a novelty search [17], where ASI geometries are
rewarded for their novelty.

After variation and crossover creates a number of new individuals, a selec-
tion phase occurs to ensure the population size remains constant. We do this
by running magnetic simulations of the geometries and evaluating the out-
put to determine its fitness. The population is then reduced by removing the
geometries of inferior fitness. As we are using novelty search, the fitness will
quantify how novel a given geometry’s behaviour is.

The parameters shared between both novelty searches are as follows. The
population size is 100 and mutation probability and crossover probability are
both 0.4. Each geometry can have a maximum of six tiles and a maximum
of six symbols. We parameterise the symbol of a magnet as a function of its
current rotation. Specifically, we use a piece-wise function to select the sym-
bol of a magnet depending on whether its orientation is greater or less than
180◦. All geometries are grown to have exactly 100 magnets. If a geometry’s
growth process terminates early, before reaching 100 magnets, it is assigned
the worst possible fitness.

4.4 Disorder Free Search
First we consider the disorder free case on 8 bits of input (n = 8). In this
case the novelty space is small and discrete, so we can use a very simplistic
novelty measure. If we let si be the state count for an individual i and N be
the set of all so far unseen state counts, then the novelty of an individual X is
given by:

novelty(X ) = − min
n∈N

(|sX − n|) (1)

i.e., an individual’s novelty is how close its state count is to the nearest unob-
served state count. Using this fitness function and our ASI representation, a
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(a) (b)

FIGURE 6
(a) Example of points distributed evenly in the S-r search space, and four extreme points A, B, C
and D. (b) The points from (a) after being transformed into the x-y space by the transformation
given in 2, illustrating how the transformation affects the proximity of points and thereby the
novelty metric.

novelty search was executed in search of state counts from 2 to 255 (state
count 1 was excluded as it is not of computational value and hindered the
search).

To assess the effects of disorder we take the ASI geometries discovered in
the disorder free search and evaluate their performance when simulated with
disorder. For each of the discovered state counts we take a geometry with
that state count and run 100 independent simulations with different instances
of disorder and record in what percentage of these it retains its original state
count.

4.5 Novelty Search with Disorder
Next, disorder is introduced into the search process to assess the capability of
the EA to produce geometries with robust behaviour. To evaluate the robust-
ness of a geometry it is insufficient to test on just one instance of disorder.
The number of different disorder instances to test on must be enough that the
EA does not over-fit and learn to exploit phenomena specific to the particular
instances of disorder. Thus the state count of a geometry is no longer a single
value but an ensemble of different state counts and the frequency at which
they occur.

We evaluate each geometry on 100 different instances of disorder. This
increases the run time of the novelty search 100 times. In order to run the
search in feasible time we decrease the number of input bits to n = 4, reduc-
ing the number of state counts to 16.

Here, we define the modal state count of a geometry S as the state count
observed most frequently over the different disorder instances (ties broken
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arbitrarily). We then define the geometry’s robustness r as the proportion of
observations where the state count was S.

Our search space for novelty search is the 2D space spanned by S and r .
The canonical way to define novelty of an individual is to use some metric
on the population of individuals in its behavioural neighbourhood, i.e., the
amount or their proximity. Instead of doing this in the S-r space, we first
transform the coordinates into a new x-y space with the transformation:

x = r cos(θ )

y = r sin(θ ),

where θ = (1 − S

Smax
)π

(2)

The effect of the transformation is to use the S and r as a form of polar coordi-
nates, as seen in Figure 6. Applying the transformation before evaluating the
novelty of individuals give two main benefits: firstly, prior to the transforma-
tion individuals with less than 50% robustness make up for 50% of the search
space. After the transformation these less robust individuals are compressed
together taking up 25% of the search space.

Secondly, consider 4 individuals, A, B, C and D (shown in Figure 6),
where A and B have high robustness but with maximally different state
counts, and C and D have low robustness and maximally different state
counts. We can see from Figure 6(a) that these individuals constitute the 4
corners of the S-r space, thus the behavioural distance, dist(A, B), is equal
to the distance between C and D, dist(C, D). However, individuals with low
robustness produce a wide variety of state counts. Hence, the modal state
count metric is a poor discriminator for low robustness individuals. As such
we consider C and D to be more behaviourally similar than A and B. After
the transformation, we can see in Figure 6(b) that dist(C, D) is now min-
imised and dist(A, B) is maximised. Thus, post transformation, the nov-
elty metric more accurately portrays our understanding of novelty in the
behaviour of the individuals.

To ensure the geometries are truly robust to disorder and are not just per-
forming well on the specific instances of disorder they are tested on, we eval-
uate the most robust individual for each state count against a test-set of 100
new, unseen instances of disorder.

5 RESULTS

First we report the results of the search without disorder with an 8-bit
inputs (section 4.4) and the consequences of adding disorder to the resulting
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FIGURE 7
Results of novelty search to find geometries of different state counts. The blue dots show in
which generation a state count first observed. The red dashed line shows the total number of
different state counts observed by that generation in in the evolutionary run.

geometries. Secondly, we present the result of the evolutionary search where
disorder was considered from the start and inputs of 4-bits were used (sec-
tion 4.5).

5.1 Results of the Disorder Free Search
Figure 7 shows the state counts discovered each generation during the evo-
lutionary run. All 254 unique state counts were discovered by generation 73.
We see stable discovery of new state counts for the majority of the run which
tapers off towards the end, perhaps as the remaining state counts are harder
to achieve, but also as there are fewer left to find.

From the results shown in Figure 8(a), we can see all but the first few
state counts suffer significantly when disorder is introduced. The highest per-
formance is the geometry that was discovered with state count of 4 which
retained its state count in 84% of the disorder instances. All geometries with
an original state count of 16 or higher retained their state count in 5% or less
of the disorder instances, and those with original state counts above 55 did
not retain it in any of the disorder instances.

These results show the need to take disorder into consideration when
designing computational ASI geometries for the real world. Had we wanted
to fabricate one of these geometries we would have at best an 84% success
rate if we choose a state count of 4 where the robustness was highest. If we
wanted to fabricate one of the high state count geometries then there would
be almost no chance of success.

Figure 8(b) shows the distribution of the state counts each geometry pro-
duces when simulated with the different instances of disorder. We can see that
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(a)

(b)

FIGURE 8
The results of taking the geometries discovered in the disorder free search, and evaluating them
with disorder. One geometry for each of the 254 state counts discovered was evaluated against
100 different disorder instances. The original state count is the state count observed when no
disorder is present. (a) shows the percentage of the separate disorder instances in which the
geometry still exhibits its original state count. All geometries with original state counts above
55 have a correct state count of 0%. (b) shows the original state count of a geometry versus all
the different state counts that were observed when that geometry was subject to the different
instances of disorder.

there is a lot of spread in the observed state counts for each geometry. Also,
there is no apparent trend or relationship between the original state count of
a geometry and the state counts observed when it is subjected to disorder.
This strongly indicates that the computational properties discovered with the
novelty search have been destroyed by the application of disorder.

5.2 Results of the Evolutionary Search with Disorder
Figure 9(a) shows the most robust individual found for each state count, and
the distribution of state counts it produces. Immediately, we can see all state
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(a) (b)

FIGURE 9
(a) The spread of observed state counts in the most robust geometry for each modal state count,
tested on the set of disorder instances used in the evolutionary run. The size of the blue dots
is relative to how many times a certain state count was observed over the different disorder
instances. Each column is labelled with the corresponding geometry’s percentage robustness.
(b) The same geometries but simulated on 100 new unseen instances of disorder. Here the x-axis
shows the modal state count the geometry produced on the original set of disorder instances.

counts were found with some level of robustness, and that for the first 5 state
counts an individual was found with perfect robustness, i.e., it produced the
same state count over all the different instances of disorder.

From Figure 9(b) we see that all the individuals with 100% robustness
maintained this level of robustness on the test-set, a strong indication that
these individuals are truly robust to this level of disorder. On the other indi-
viduals, we mostly see a reduction in robustness in the range 3% − 13% with
two exceptions being a reduction of 17% and an increase of 2%.

It can also be seen in Figure 9(b) that, where the robustness is not 100%,
the other observed state counts are clustered around the modal state count.
This shows that there exists locality in the state count of the ASI, indicating
there is some gradient in the search space. This locality in the state count
could be viewed as kind of resilience or graceful degradation, where the sys-
tem is not performing optimally but still retains some level of quality. Fur-
thermore, in applications such as RC, it may not be necessary to achieve an
exact state count, and rather it is desirable to be within a particular region
of the search space which corresponds to some desired dynamical regime. In
such a situation, these results show particular promise.

Figure 10 shows how the robustness for each state count improves over the
course of the novelty search. We can see that as in the no disorder case (Fig-
ure 7), smaller state counts were found earlier. Moreover, it was seemingly
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FIGURE 10
The evolution of robustness in each state count over the course of the evolutionary run. The
colour indicates the highest robustness individual for the given state count observed so far in
the evolutionary run (the individual may not still be present in the population). The maximum
robustness achieved by the end of the run is shown on the right.

much easier to find fully robust candidates at the lower state counts, with
the first five being discovered almost immediately. In the higher state counts
there are clearly some regions of step-wise improvement as newly discovered
individuals are iterated on and improved, though in some cases there are also
large stagnant periods with no improvement.

A selection of the most robust geometries for different state counts is
shown in Figure 11. The geometry with state count 15 stands out amongst
the others as appearing particularly 1-dimensional (most of its extent is along
one direction). One could hypothesise that a more 1-dimensional geometry
would lend itself to producing higher state counts or having lower robustness,
as each magnet has fewer neighbours and thus more freedom to ‘choose’ its
own state. However, taking the dataset of the full evolutionary run we were
not able to find any significant correlations to corroborate such a hypothesis.
It may be that such correlations exist, and that this dataset was not sufficient
to observe them.

6 CONCLUSION

In this work we have shown the need to consider disorder when investigat-
ing a metamaterial for computation, and demonstrated the extent to which



EVOLVING ARTIFICIAL SPIN ICE FOR ROBUST COMPUTATION 339

FIGURE 11
A selection of geometries with the highest robustness (r ) for their state count (S). Each geometry
was grown until it contained exactly 100 magnets.

disorder can destroy computational properties observed in a simulated ASI.
We have also shown that by including disorder in our evolutionary search, we
achieve a substantial increase in the robustness of the produced ASI geome-
tries across all state counts.

In addition to finding geometries with 100% robustness for some state
counts, we have also shown that the geometries which were not fully robust to
disorder did show strong signs of resilience or graceful degradation where the
state counts were mostly tightly clustered around their modal state count. In
applications such as RC where one often wants to target a certain dynamical
regime, the state count gives a heuristic to measure or target different regimes.
In this case, these results are particularly promising as being close to a certain
modal state count is likely sufficient.

Though we have focused on ASI as our substrate for material computation,
concepts such as state count and robustness to disorder are widely applicable
across different metamaterials and different realisations of material compu-
tation. While simulation provides powerful insight into new substrates for
computation, any phenomena exploitable for computation in simulation must
be robust to disorder if the computation is to achieve the ultimate goal of
material computing, computing in materio.
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