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We use the Tyson-Fife model of the Belousov-Zhabotinsky reaction to
numerically investigate the propagation of chemical reaction-diffusion
waves through narrow, quasi-one-dimensional channels. We create soft
obstacles in the form of activator and inhibitor diffusion coefficient
inhomogeneities. Using a Fast Inhibitor Diffusion Region, in which the
inhibitor’s diffusion is larger than the activator’s diffusion, the system
can exhibit unidirectional propagation behavior – the diffusion diode. In
a light-sensitive BZ-system, we discover a nonlinear compensation rela-
tionship between a higher activator diffusion (causing increased wave
speed) and illumination (causing decreased wave speed) to achieve nor-
mal wave behavior. This enables the creation of a very energy efficient
on/off-switch for chemical computation circuits in which a low intensity
light pulse can be applied to a diffusion diode to disable wave propaga-
tion.

Keywords: Barkley model, Belousov-Zhabotinsky reaction, diffusion coeffi-
cient, Diode effect, fast inhibitor diffusion region, fast propagation region,
light-sensitivity, nonlinear wave, numerical simulation, reaction-diffusion wave,
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1 INTRODUCTION

Nonlinear dynamical systems outside of thermodynamic equilibrium reveal
a fascinating wealth of spatial, temporal, and spatio-temporal structures
on a macroscopic scale in various physical, chemical, and biological
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pattern-forming systems. In excitable reaction-diffusion (RD) media [19],
propagating fronts are also the building blocks of more complex spatio-
temporal patterns. The Belousov-Zhabotinsky (BZ) reaction has become a
model system to investigate excitable media because of the wide variety
of options to interfere with its wave behavior by manipulating the reaction
and/or the diffusion component, creating inhomogeneous conditions.

These options include, for example, light-sensitivity [12, 23], geomet-
rical constrains [37], temperature [24], electric fields [35], kinetic modu-
lations [21], non-penetrable no-flux boundary (hard) obstacles [6], or soft
obstacles [51]. It is also possible to create diffusion inhomogeneity, allow-
ing the excitation front to enter and propagate under different conditions than
on the outside [52]. A comparison of the effect between similar soft and hard
obstacles has been investigated by Tanaka et al. [39]. Soft obstacles can effect
the reaction and/or the diffusion of a propagating wave. The photosensitive
RD system is mostly used to manipulate the reaction aspect, whereas liq-
uid media with gel-like obstacles can be used for manipulating the diffusion
aspect without interfering with the reaction term. The interface between a
liquid solution and a gel creates a diffusion step similar to a fast propagation
region [31]. It has also been shown that waves passing through two unequal
holes [30] or interactions with obstacles [32, 50] can initiate spiral waves
which are of interest in chemical computing (pulse generator) and cardiac
research (fibrillation of the heart).

The spatial geometry and homogeneity within the soft obstacle areas has
a significant effect on the overall wave behavior. For example, if the obstacle
is a homogeneous, non-excitable area, excitation waves can tunnel through
those obstacles [31]. In particular, Gao et al. examined the effect of Fast Prop-
agation Regions (see, for example [52]) with a modified Barkley model [7]
which can, in particular configurations, initiate an unidirectional block of the
wave propagation or create rotating spirals [11]. A review about wave prop-
agation in inhomogeneous excitable media can be found in [51]. Ermentrout
and Rinzel used a structural inhomogeneity (change in wire diameter) to cre-
ate a system in which a signal can be blocked, passed, or reflected [9].

The large variety of geometrical and RD-specific manipulations in one-
and two-dimensional geometries are the basis for the idea that excitable sys-
tems can be used for information processing which is also called ‘chemi-
cal computing’ [3, 14–16]. Besides general mathematical procedures as they
appear in classical computers or signal manipulations in nerves, language
recognition systems have also been created [8]. Examples of classical com-
puting using BZ systems are logic gates [44], multi-bit binary adder [49], or
multi-bit binary decoder [38].

Initially, unidirectional behavior in wave propagation was the result of
a non-parallel gap between two excitable area (e.g., corner of one square
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touching the side of another) [4], perpendicular channels touching each other
[33], or asymmetric connections [18, 34]. Another option is the connection
of a narrow channel to a wide 2D area [42]. In branching systems, the angle
between the channels plays a role as well [2], as does a set of gaps [5]. Using
an illumination gradient, it was computationally shown [43] and later exper-
imentally verified [17] that unidirectional propagation is possible. An exci-
tation wave could travel in one direction across an illumination gradient, but
not the other. Similar results were found with a step-barrier composed of two
areas with different but homogeneous excitabilities [13].

Experimentally, the diffusion properties of RD waves can be manipulated
in many ways. The first developed method were catalyst-loaded beads which
are immersed in a catalyst-free aqueous BZ solution [27, 28]. Those beads
are coupled mostly via diffusion of the activator molecule HBrO2. Another
option are BZ-vesicles in water-in-oil microemulsions, coupled by diffusion
of the inhibitor molecule Br2 through the oil phase [41, 48]. Very recently,
spherical silica gel BZ microparticles have been used in which the BZ reac-
tants are confined inside these beads [25, 26].

Computational studies of reaction-diffusion systems afford control over
parameters and conditions that are difficult to control in the lab. With
the already healthy agreement between mathematical models and observed
dynamics [51], we can comfortably interrogate the effects of precisely vary-
ing such parameters. Of late, inhomogeneous variations have been of interest,
see for example Kozak et al. [21].

In this study, we focus on inhomogeneous diffusion in the Tyson-Fife
model of the Belousov-Zhabotinsky (BZ) reaction. We investigate the effect
of the channel’s diffusion condition on wave propagation. But instead of
implementing Fast Propagation Regions (FPR), with an increased activator
diffusion coefficient Du and, most of the time, immobilized inhibitor diffu-
sion coefficient Dv , we implement a Fast Inhibitor Diffusion Region (FIDR),
increasing the inhibitor diffusion coefficient to obtain a diffusion ratio of
Dv/Du > 1.0. Totz et al. used FIDR to observe transversal wave front insta-
bilities instead of the usual damping of curvature perturbations [45]. Section 2
describes our mathematical model, Section 3 describes our numerical meth-
ods, Section 4 details our diffusion diodes and light-sensitive switches, and
Section 5 offers our conclusions.

2 MODEL

Excitable reaction-diffusion systems, in general, share some kind of activator
species u and inhibitor species v whose interplay produces the rich dynam-
ics these systems are known for. The reaction part of our reaction-diffusion
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system is the Tyson-Fife [47] reduction of the three-variable Oregonator
model [10]

Ru[u, v] = 1

ε

(
u − u2 − f v

u − q

u + q

)
(1a)

Rv[u, v] = u − v , (1b)

where ε � 1 is a scaling parameter, and f and q are chemical parameters.
These two equations represent the coupled change in the two dimensional
concentration of the activator u[x, t] and inhibitor v[x, t] over space x and
time t due to the chemistry of the BZ reaction.

For the parts of our investigation in which we applied illumination as
another modulating parameter on the wave propagation, we followed Krug
et al. [22] and included the photoinhibitory term φ into Eq. (1a) to obtain

Ru[u, v] = 1

ε

(
u − u2 + ( f v + φ)

q − u

q + u

)
(2a)

Rv[u, v] = u − v . (2b)

For spatially varying diffusion coefficients we need to use Fick’s Second
Law for variable diffusion of a species w, which implies the generalized dif-
fusion equation

∂tw = �∇ · �Jw = �∇ ·
(

Dw
�∇w

)
= �∇Dw · �∇w + Dw∇2w

= ∂x Dw ∂xw + Dw∂2
x w (3)

in 1 + 1 dimensions. The above formulation is general: we recover homoge-
neous diffusion when the diffusion coefficients are constants, as the gradient
of a constant is zero and so the gradient-product term collapses.

Once assembled, the Tyson-Fife reaction-diffusion system with spatially
dependent diffusion coefficients reads

∂t u = Ru + ∂x Du ∂xu + Du∂
2
x u, (4a)

∂tv = Rv + ∂x Dv ∂xv + Dv∂
2
x v. (4b)

The system is ready for the application of numerical techniques.
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3 NUMERICAL METHODS

To guard against error, we implement two independent numerical pipelines:
the Finite Difference Method (FDM) in Obj-C and the Finite Element Method
(FEM) in Mathematica [1].

For FDM, we apply a Forward-Time-Central-Space finite differencing
method to our system of equations with no-flux, Carl Neumann boundary
conditions [29] to contain the simulation. Continuous time and space are dis-
cretized to have small but finite space �x and time �t steps. We evolve
forward in time by substituting finite approximations for the derivative oper-
ators. Numerical error are bounded for �t � �x2. FDM integration steps
are typically �t = 0.001 and �x = 0.15. A more detailed description can be
found in Smith et al. [36].

As an FEM check, we also use Mathematica’s NDSolve[] function to
implement the method of lines. Spatial discretization is via finite elements
with a maximum mesh cell size of 0.2.

For all our simulations, we use the parameters ε = 0.03, f = 3.0, and q =
0.001 in Eq. (1a) if not otherwise stated. Under normal channel conditions,
without any diffusion diode, we use Dv = Du = 0.5.

4 RESULTS

4.1 Diffusion Diode Behavior
Zykov et al. reported unidirectional propagation or diode behavior in a two-
step fast propagation region with no inhibitor diffusion [52]. Under these
conditions, a wave is blocked by a very sharp increase in the activator’s dif-
fusion rate whereas the wave propagates though this region if the step height
is divided into two steps of half-height (see Figure 1 of [52]).

In contrast, Eqs. (4) consider activator and inhibitor diffusion and we
use the ratio of the inhibitor diffusion coefficient to the activator diffusion
coefficient Dv/Du to define the region. In a Fast Inhibitor Diffusion Region
(FIDR), with diffusion ratio Dv/Du > 1, wave death is possible, and we
observe unidirectional propagation caused by sufficiently large inhibitor dif-
fusion Dv .

In general, excitation waves in the Tyson-Fife model can survive faster
inhibitor diffusion – up to a certain point. The amount of u- and v-
concentration in solution relies on an interplay between the spike in con-
centrations due to the traveling excitation wave and the diffusion of the two
species. If a wave enters a regions in which the inhibitor species diffuses
faster, it is possible for the trailing inhibitor peak to leak some inhibitor in
front of the reaction front, as shown in Figure 1. This behavior should be
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FIGURE 1
Fast Inhibitor Diffusion Region (FIDR) wavefront death. Left: FDM time series of an excitation
wave propagating in a region with Dv/Du = 3.0. The activator u concentration profile is dashed
blue. The inhibitor v concentration profile is solid gold and has been multiplied by a factor of
4 for visualization. After the inhibitor concentration leaks into the front of the wave, the activa-
tor concentration quickly decreases. Center and Right: FEM time series of an excitation wave
entering an FIDR gradient (gray area) with a diffusion-ratio of y = (Dv/Du ) − 1 (surrounded by
Dv/Du = 1.0). Center: wave survives propagation down an inhibitor diffusion gradient. Right:
wave succumbs to propagation up an inhibitor diffusion gradient.

distinguished from a system where the inhibitor diffusion is larger through-
out the system causing stationary Turing structures to appear [46].

The mechanism for wave death due to fast inhibitor diffusion suggests that
the moment the inhibitor concentration increases above a certain value at the
wave’s front, the wave velocity decreases, allowing the inhibitor concentra-
tion to increase even further. At sufficiently large faster inhibitor diffusion,
the wave dies before it can reach the end of the FIDR. Conversely, if a wave
propagates into a high FIDR first, it slows down but can speed up again if the
diffusion ratio is reduced before the wave dies.

Naturally, this behavior depends on the relative strength of the FIDR and
the length of the region. For simplicity, we chose steps of equal height and
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FIGURE 2
Fast Inhibitor Diffusion Region diodes. FDM time-space plots (time increasing upward) tracking
activator u (red) and inhibitor v (blue) concentrations. Left: Two-step region diode with varying
Dv/Du showing wave entering from the left and dying before reaching the end of the diode
(center) and wave entering from the right through the high step and successfully passing through
the diode. Right: FDM time-space plots as excitation waves propagate through various step and
gradient Dv distributions.

length. We compare the total width of the region to the characteristic wave-
length of our excitable system. Our system exhibits non-monotonic disper-
sion, but under FDM successive wavefront peaks can be no closer than a
characteristic wavelength λc ≈ 20; under FEM and normal channel condi-
tions, peak length l ≈ 2 and diode length �x ≈ 6.

We constructed a quasi-1D, stepped region between two normal propa-
gation regions where Dv/Du = 1.0. An excitability drop via a step function
is able to suppress wave propagation even if the same gradual excitability
decrease would allow wave propagation [40]. The steps, from left to right,
have diffusion ratios of Dv/Du = 1.4 and Dv/Du = 1.8, as shown on the
left of Figure 2.

As outlined in the Introduction, there are a number of configurations
and conditions for achieving unidirectional wave propagation in excitable
reaction-diffusion systems. In the context of chemical computing, one-
dimensional, one-way obstacles are desirable components for constructing
logic gates. While diffusion-based unidirectional propagation has yet to be
experimentally achieved, we believe that step-gradient diodes can be created
by placing various gel segments in a row.
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FIGURE 3
Two-step diode discovered by Finite Element Method (FEM) numerical integration of Tyson-
Fife Eq. (4) with no-flux boundary conditions (cf. Fig 2 left). Top row: Time-space plots super-
impose activator concentrations u[x, t] for rightward and leftward waves. Bottom Row: Diffu-
sion ratio plots indicate successively larger Fast Inhibitor Diffusion Region (FIDR) steps. Diode
exists in second column, where the leftward wave dies due to Dv/Du steps of just under ∼ 0.5.
For larger steps, both waves die. Smooth C∞ steps constructed by superposing e−1/x functions.

FIGURE 4
Gradient diode discovered by FEM numerical integration of Tyson-Fife Eq. (4) (cf. Figure 2
right). Top row: Time-space plots superimpose activator concentrations u[x, t] for rightward and
leftward waves. Bottom row: Diffusion ratio plots indicate successively larger FIDR gradients.
Diode exists in second column, where the leftward wave dies due to the Dv/Du gradient of
just over ∼ 1.0/6.0. For larger gradients, both waves die. Smooth C∞ gradients constructed by
superposing e−1/x functions.

For comparisons, we constructed FIDR in spatially symmetric channels
and allowed RD-waves to enter the diode from either side. The right of Fig-
ure 2 shows a 2-step (top), a 4-step (middle), and a gradient (bottom) region
with waves entering through the large step (left column) and small step (right
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FIGURE 5
FDM diode exists between the red and magenta regions in linear-linear (left) and log-log (right)
plots of diode maximum diffusion ratio Dv/Du versus normalized diode length �x/λc . For
unidirectional propagation, short diodes need large excess inhibitor diffusion, while long diodes
need small excess inhibitor diffusion.

FIGURE 6
Control ratio r for different activator diffusions Du and light intensities φ with no inhibitor dif-
fusion (Dv = 0). Red-white-blue colors indicate FDM retardation compared to a normal wave
with Du = 1 and no illumination (φ = 0). White indicates where illumination retardation bal-
ances diffusion advancement. For fixed activation diffusion, illumination increases retardation.
Green indicates unsustainable or very slow propagation.

column). The figure also shows time-space plots of a wave propagating from
the left and a wave propagating from the right. Clearly, one is able to traverse
the obstacle and reach the other side of the channel and the other is not. In
colloquial terms, the wave is unable to survive climbing up the steps but it
is able to go down them. In addition to using the finite differencing method
(FDM), we also applied the finite element method (FEM) and obtained very
similar results for both the 2-step and the diffusion diodes, as illustrated by
Figures 3 and 4.
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Depending on the maximal Du-value (total barrier height) waves can
travel through the barrier from both sides, waves die entering from either
side, or the one way travel of the diode effect obtains. According to Fig-
ure 5, for unidirectional propagation, short diodes need large excess inhibitor
diffusion, while long diodes need small excess inhibitor diffusion, both for
multi-step and gradient diodes.

4.2 Diffusion compensation
Since both light intensity φ and the diffusion rates Du and Dv affect the speed
of an excitation wave, it is possible to compensate one effect by the other as
they act in opposite directions. A similar illumination compensation of waves
propagating through a non-planar system has been reported by Kheowan et
al. [20].

To explore diffusion compensation by light, we simulate wave propaga-
tion in one-dimensional channels and record the time for waves to traverse
them. Normal control conditions of Du = 1.0, Dv = 0.0 and φ = 0.0 fix the
default time. Other combinations of Du , Dv = 0, and φ generate different
times (with an immobilized gel maintaining zero inhibitor diffusion). To
quantify the advancement or delay of propagating waves, we introduce the
control ratio or retardation r = �t/�t0, where �t is the time for a wave to
traverse the path under specific diffusion Du and light φ divided by the time
�t0 for the control wave to traverse the path.

Figure 6 plots the control ratio versus activator diffusion and illumina-
tion. Distinct regions include: i) The upper left, blue region where the wave
is faster than the control wave due to the faster activator diffusion; ii) The
lower right, red region where the wave is slower than the control wave due
to the smaller Du value; iii) The white line that separates the faster region
and the slower wave region highlighting the non-trivial compensation rela-
tionship; iv) The upper right region with unsustainable conditions and wave
death within the channel; and v) The cusp in the bottom right corner of the
graph at the border of the green region of unsustainable wave propagation
has an interesting, curved or feathered appearance.

Figure 6 is based on simulation data using Obj-C when we created a path
of a certain length and determined the time it would take a 1D wave to tra-
verse it. The figure is the result of two separate simulations in which we
used different time steps in both data frames, due to computer limitations.
For simulations with Du < 4.2 we used �s = 0.125 and �t = 0.00188. For
simulations with Du ≥ 4.2 we used �s = 0.15 and �t = 0.0002. As a result,
a slight shift in the gray contours is at Du = 4.2.

4.3 Chemical computing on/off switch
The diffusion diode also enables the creation of a very energy efficient on/off-
switch for chemical computation circuits in which a low intensity light pulse
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FIGURE 7
Schematic time-space plots of periodic reaction diffusion waves with variable diffusion Dv/Du

and illumination φ illustrate light switches. Leftward (red) and rightward (blue) waves are
independent experiments. Left: Faint light increase creates a diode. Middle: Strong light pulse
destroys the diode and creates a 2-way barrier. Right: Faint light decrease destroys a diode and
creates a 2-way opening.

can be applied to disable the successful wave propagation. If the system con-
ditions allow a wave to barely make it through the diffusion diode, a very
weak light pulse is sufficient to suppress the transmission through the diode.
This is energetically more favorable than applying a strong light pulse to
eliminate the wave.

On the other hand, it is possible to disable a diffusion diode (make it pass-
able in both direction), if the system is constantly illuminated. By reducing
the light intensity slightly for a short period of time, it would be possible to
‘open’ the diode for a wave to pass through. Instead of turning off the light
completely to allow such a behaviour, the illumination only changes slightly,
creating a less flickering set-up, which can increase the life-time of the used
light sources. Figure 7 schematically illustrates some light switches.

5 CONCLUSION

We have numerically investigated the propagation of chemical reaction-
diffusion waves through narrow, quasi-one-dimensional channels. In Fast
Inhibitor Regions, two-variable reaction diffusion waves die due to the
inhibitor concentration that is classically responsible for the refractory period
outspeeding the activation front and destroying the excitation.

Unidirectional propagation is observed to occur with obstacles of increas-
ing inhibitor diffusion rates. Going up the obstacle damages the wavefront to
the point where it cannot successfully propagate across the soft obstacle. On
the other hand, a healthy wave can survive the extreme diffusion ratio when
going down the obstacle.
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We observe a kind of diffusion ratio forgiveness for a particular obstacle
length. Diode behavior with two step obstacles requires particular diffusion
ratios, while gradient obstacles display unidirectional behavior for a host of
ratios for the same obstacle length. This suggests that gradient diodes would
be more forgiving to achieve experimentally, but stepped diodes (e.g., hori-
zontal layers of different gel densities) may be more practical to execute.
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(July 2002). Unidirectional mechanism for reentrant activity generation in excitable
media. Physical Review E, 66(1):016215.

[34] Irene Sendiña-Nadal, M. deCastro, and Moncho Gómez-Gesteira. (2006). Kinematic
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