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Abstract 

We consider the problem of tracking of a mobile target node in a mobile ad hoc network 
(MANET) set-up. We find a Gradient model alone is usually not very efficient, whereas a 
precise Markov model which includes transition probabilities is too hard to achieve. We 
propose a generic tracking framework for online tracking applications, by integrating a 
Gradient model of the target's proximity and an online statistically estimated Markov model 
of the target's likely direction. We show PMBT achieves a short catching path with a high 
success rate. PMBT is a probabilistic online tracking algorithm that computes information 
utilities at each step, and then chooses the next step toward the target based on the maximum 
expected utility. Our algorithm avoids the need to maintain a tracking data structure (such as 
a hierarchical directory look-up structure) and the need to send periodic update messages 
about the target's location. Simulation results show, by taking a hybrid approach that 
integrates a gradient model and a Markov model, our algorithm significantly outperforms 
both gradient-based and Markov approaches alone.   

Keywords: MANET, PMBT, Gradient Model, HMM, target.  
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1  Introduction 

 

Mobile ad hoc networks (MANETs) [1, 2] do not require a fixed infrastructure support 
for communication and routing, and hence find many applications in urban warfare, disaster 
recovery, and large-scale sensing/surveillance scenarios. These scenarios become more 
feasible with the progress in mobile robotics platforms [3, 4] and cheap ultraportable wireless 
devices. In particular, a noteworthy progress recently is the kick off of the One Laptop Per 
Child (OLPC) program. OLPC program is currently shipping more than 600K laptops to 
developing countries for education. These laptops use IEEE 802.11 based ad hoc wireless 
communication to self-organize themselves into a mesh network. Tracking of a mobile target 
is an important service for MANETs that enables routing of a message to the mobile target [1, 
5, 6]. Such target tracking in MANETs is challenging because the tracking protocols need to 
deal with---in addition to the mobility of the target--- the mobility of the intermediate nodes 
that maintain a track toward the target. Since the intermediate nodes that maintain the tracks 
to the target and relay protocol messages are also allowed to be mobile, maintaining a 
distributed location lookup/tracking directory over the network is hard, let alone doing it in a 
bandwidth-efficient and distance-sensitive manner. 

Existing work on target tracking in MANETs mainly lie in two categories: 
structure-based approaches and structure-free approaches. The first type of protocols 
dynamically maintain certain structures, such as trees or overlay graphs, such that a message 
may simply follow the structure to reach the target [7, 8, 9, 10]. Although most of these 
protocols provide deterministic location services, they have the following drawbacks: 1) 
Maintaining a structure is costly in terms of communication/energy is not scalable in 
MANETs setting, and 2) The target's location needs to be periodically updated in the structure, 
which introduces a large communication overhead. 

In structure-free protocols, nodes take local decisions by making prediction over 
available knowledge to generate a path on demand for a tracking message to be forwarded to 
the target. Gradient based and/or prediction based approaches are classic examples of this 
type [11, 12, 13]. Structure-free approaches use much less communication, gradient can be 
generated effortlessly due to the mobility of the nodes [14]. However, structure-free 
approaches are based on pedictions rather than location look-up, and are prone to tracking 
failures (dropping of the target message) or taking long delivery paths to the target. 

 Our goal in this paper is to improve on the effectiveness of structure-free tracking 
approaches. To this end, we introduce a hybrid Probabilistic Model Based Tracking (PMBT) 
framework that integrates a Gradient model of the target's proximity and an online statistic 
Markov model of the target's likely direction. The goal of this protocol is to reach closer to 
the same effectiveness level of the structure-based frameworks without the periodic updating 
costs of the target. Our main contributions are as follows:  

    • We introduce the PMBT protocol that, for the first time, integrates a Gradient 
model and Markov model into a unified model for tracking in MANETs. PMBT is a 
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probabilistic online tracking algorithm that computes information utilities at each step, and 
then chooses the next step toward the target based on the maximum expected utility. By 
comparing PMBT's performance with that of the Gradient model and the Markov model 
under different circumstances, we show that PMBT outperforms both.  

    • We prove the convergence conditions of PMBT protocol and further provide the 
A-PMBT protocol capable of tuning the parameters adaptively by utilizing the confidence of 
the gradient. A-PMBT leverages the weight of the Gradient model and Markov model 
adaptively, and yields better performance than PMBT.  

    • We provide a lightweight implementation abstraction for all these models. Our 
abstraction is based on a loose synchronization the state of nodes in each cell and a polite 
gossip mechanism for forwarding the tracking messages. 

The rest of the paper is organized as follows: Section 2 introduces the Markov model, the 
Gradient model and the PMBT model, and then compares their pros and cons through 
analysis. Section 3 describes the lightweight abstraction we use for the distributed 
implementation of these frameworks. We present the simulation results in Section 4, and 
review the related work in Section 5. Finally, we conclude the paper in Section 6. 

 

2  Probabilistic Model Based Tracking 
  

After clarifying the assumptions in our set up, we first present a summary of the 
specialized Hidden Markov Model based tracking and the Gradient based tracking protocols. 
We then present our protocol PMBT, which is a hybrid of these two approaches. 

2.1  Assumptions 

We assume a dense mobile ad hoc network. Nodes reside on a two dimensional plane, 
with their localized coordinates (x,y) available. The field is divided into grid regions, 
overlaying a logical virtual cell layer over the network. We set the cell size such that all nodes 
between neighboring cells are within one hop distance, as in the setup in [15]. 

Nodes do not have a global view of the entire network. In contrast to the set up at [16] 
that assumes that nodes can monitor the target continuously in the field, we do not make any 
such assumptions. Nodes can sense/detect the target in a binary manner only when the target 
is in the same grid cell as the node. Historical data are cached by the mobile nodes who have 
encountered tracking targets. To save energy, they are not exchanged between nodes.  

 The computation of the optimal track in Hidden Markov Model (HMM) is very costly 
especially when the number of nodes becomes large. The solution is to simplify the 
prediction process given that the movement of target can only take place between four 
neighboring cells. What's more, utility information is constructed in a distributed manner 
using a weighted average of the gradient and the transition probability. The gradient results 
from node mobility: a node encountering the target saves the target's location and sets the 



 Network Protocols and Algorithms 
ISSN 1943-3581 

2011, Vol. 3, No. 2 

www.macrothink.org/npa 4

gradient to be one that descends as it gets older. In the following, we first introduce the HMM 
model and the Gradient model, followed by the formalization of PMBT model. 

2.2  Hidden Markov Model 

HMM has been used for solving the 2D plane target tracking problem in [17, 18]. A 
discrete HMM can be applied when the division of the region is finite. The approach we 
describe here discretizes the target region into cells and formalizes the transition matrix in an 
online probabilistic model rather than deterministic transition parameters. 

The HMM model for tracking contains the following parameters:   

    1.  the possible states S ൌ Sଵ, Sଶ, . . . , SN, each cell corresponds to one state.  

    2.  the transition probabilities A ൌ a୧୨ሺ1 ൑ i ൑ Nሻ, where a୧୨ is defined as the 

transition probability of moving from state S୧ to S୨, that is a୧୨ ൌ Pሺq୩ ൌ S୨|q୩ିଵ ൌ S୧ሻ. 

Geometrically, a୧୨ is only meaningful when the states S୧ and S୨ are neighboring cells. To 

simplify, we consider only four transitions, moving up, down, left and right (It is 
straightforward to allow more transitions such as moving upleft, upright, downleft and 

downright). The rest of the elements in matrix  are all zeros. Figure 1 shows the discretized 

target space and the constrained HMM transition model.  

    3.  an initial distribution of the target in each state ∏  ൌ Π୧ሺ1 ൑ i ൑ Nሻ.  

  

Figure  1: Target space discretization and constrains in HMM transition model. 

   

Viterbi algorithm can be used to find the most likely track (state sequence) given the 
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observations Oଵ, Oଶ, . . . , O୬ (i.e., signals). Sensor arrays are used to get these data: each node 
reports an observation at every discrete time. Viterbi algorithm finds the most probable path 
at each step by maximizing likelihood, yet it is extremely computational costly and time 
consuming for a large number of cells (states). However, given the fact that the transition 

probability a୧୨ is only limited to adjacent cells, each cell can work independently in each 

step. The entire path can be achieved by simply joining the subtrack at each cell. In our paper, 
we use this distributed implementation, the details of which are discussed in Section 3. 

Although the HMM model has been used in target tracking applications, it adds some 
constraints when applied to distributed mobile ad hoc networks. Firstly, the algorithm relies 
on the target's prior probability distribution, which is hard to acquire precisely; secondly, the 
HMM model assumes each state Pሺsሺt୬ሻሻ ൌ Pሺsሺt୬ሻ|sሺt୬ିଵሻሻ ڄ Pሺsሺt୬ିଵሻሻ, predicting the 
next move based only on the last location, which may not be correct in some cases; lastly, 
although in most real world cases, a target's movement is quite limited (i.e., limited on roads), 
for randomized mobility models (i.e., random waypoint mobility model), HMM cannot 
provide good prediction as it is inherently unpredictable. 

 The transition information in each cell are loosely synchronized to reduce coordination 
overhead. A node enters a new cell, it drops old information and picks up the information in 
the cell by sending a DATA REQUEST message. We discuss the lightweight implementation 
in more detail in Section 3.  

2.3  Gradient-based Model 

The gradient-based model we discuss here shares similar concepts with [14], and differs 
in gradient construction and message forwarding. The intuition behind this model is that the 
history of target events provides gradient indication toward the target. This gradient is 
maintained not by communication among nodes, but solely by the node mobility inherent in 
the MANET. 

When a node detects the target, its gradient value is set to 1 and the location and 
timestamp also remembered by the node. This gradient information tells us the location of 
target sometime ago. We use an exponential decreasing function to keep decreasing this value 
at that node with the passing of time. This is inspired by the decay law in physical 
phenomena that an event's effect decreases exponentially to the distance of the event, i.e., 

Nሺdሻ ן ଵ
ୣౚ. More specifically, we construct the gradient with respect to time t as equation 1:  

ሻܜሺ܏ ן ൝
૚ ൌ  ܜ    ૙ 
ܜି܍  ૙  ൏ ൏  ݐ     ܶ
૙ ܜ  ൒  ܂  

        (1) 

where T is the lifetime of an event: when the record is refreshed (a node detects the 
target), g(t) becomes 1; and the record will be dropped after T to avoid redundancy. This 
model yields a gradient distribution where the nearby nodes to the target tend to have higher 
gradient values whereas farther away nodes hold lower gradient values(or zero). This is 
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because in most cases, the distance a node travels is proportional to time t. For instance, in 
Brownian motion, the distance traveled is proportional to the square root of the time t. It is 
worthwhile to mention that our gradient generation process relies on the mobility of sensor 
nodes and does not involve any message exchanges between nodes. 

Figure 2 shows the gradient distribution under two different mobility models - the 
random walk model and the random waypoint model, where all the nodes are mobile. We can 
see that the distribution simulates the decay law well enough in general for gradient based 
tracking algorithms to perform effectively, however some local maximas are also observed. 
Due to the uneven mobility of the nodes, the information distribution is not smooth. Local 
maxima, local minima, or flat regions where information gradients are either the same or zero, 
may exist. In practice, other factors such as obstacles or node failures, also causes such 
discontinuity in the decay distribution. To overcome the local maxima problem, the gradient 
based model selects the best move from the neighbors, i.e., from i to j, even if the gradient 
gሺj, tሻ ൏ ݃ሺ݅,  ሻ. The tracking message marks the local maxima node to prevent the messageݐ
being looped back by neighboring nodes. This way tracking messages can escape from local 
maxima and eventually be forwarded to the target. 

 

 
Figure  2: Information decay space distribution with mobile speed 2m/s. Both the random walk model 

and the random waypoint model show similar decay behavior. 
 

In [9] we show that a cell abstraction can be achieved easily given the assumption that 
the coordinates of any nodes are available(a node does not need any message exchange with 
other nodes to decide which cell it belongs to). Gradients are based on nodes rather than cells, 
and they are not exchanged between nodes. Hence we need a mechanism to decide which 
node in the cell is responsible to forward tracking messages. To this end, we use a polite 
gossip message forwarding scheme that does not require querying of all the nodes in a cell to 
decide which node should be used for forwarding the tracking message further. For this 
scheme, we associate the gradient information with an application layer backoff timer, such 
that nodes with higher gradient values have better chances to respond and relay the tracking 
message. We discuss this novel design in more detail in section 3. 
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 Note that this is a greedy based searching algorithm, therefore cannot guarantee an 
optimal path due to the lack of global knowledge. After each step, the query message sets 
closer to the target with high probability.  

2.4  PMBT Model (Probabilistic Model Based Tracking Model 

 So far we have discussed two tracking models: the gradient-based model and the HMM 
model. The gradient-based model provides a progressive tracking scheme, but is quite limited 
to the freedom and the percentage of mobile nodes: in an extreme case where all nodes are 
static, the target's information cannot be distributed, hence the model will not work well. The 
limitation of the HMM model, as we have mentioned before, is that it has to be trained before 
a prediction and is not suitable for random movement targets.  

HMM only works when the target is highly predictable, and gradient model does not 
work well when the nodes are static as our gradient distribution relies on the node mobility. 
In order to reap the advantages of both the gradient-based model and the HMM model while 
minimizing their disadvantages, we use information utility for measuring the contribution of 
nodes in each cell. As both the transition probability and gradient measures the likely 
direction of the target, our information utility for cell  is defined as equation 2:  

 ૎ሺܑሻ ൌ હ૖૚ሺܒܑ܉ሻܛܗ܋ሺીܑܒሻ ൅ ઺૖૛ሺ܏ሺܑ,  ሻሻ  (2)ܜ

Here, Ԅଵሺa୧୨ሻ is the normalized weight of the Markov transition probability where a୧୨ 
is the best move for HMM model, and Ԅଶሺgሺi, tሻሻ is the weight for the gradient at cell i (as 
shown in Figure 1). We illustrate the definitions for  in Figure 3. In the figure, θ୧୨ is the 
angle between the line from cell  to the estimated target  and the line from cell i to j if we 
decide to take a forward from cell i to cell j. Note the exact θ is not known since the nodes 
may not know the current location of the target. Our θ is based on the gradient information 
certain period ago when that gradient is initially created. The factor cos(θij) indicates the 
projection of Ԅ1=(aij) on the gradient Ԅଶሺgሺi, tሻሻ as they are not in the same direction. As 
െ1 ൑ cosሺθሻ ൑ 1, Ԅ1=(aij) has positive impact on the gradient when 0 ൑ θ ൑ π/2 and 
negative impact on the gradient when π/2 ൏ θ ൏ π.  
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Figure  3: The figure shows the construction of the information utility. The coefficient cos(θij) is indicates 
the projection of Ԅ1=(aij) on the gradient Ԅଶሺgሺi, tሻሻ,  and  are the weights for each model. 

   

Given the information utility, the message forwarding strategy is as follows: when a 
message arrives at a cell, the nodes in the cell make a decision based on the calculated 
information utility as to which cell the message should be forwarded. Nodes in a cell hold 

same a୧୨ but different g୧୲. Hence nodes in the same cell have various utility values at each 

snapshot. The node with highest utility decides the next forwarding direction. Our 
implementation (Section 3) avoids communication between nodes in this decision process by 
associating the utility value to an application layer backoff timer. 

     Theorem 1 (Convergence Theorem). PMBT is guaranteed to deliver all tracking 
messages to the target's location in a connected network given that ߚ is not zero and 
satisfies the following condition:  step from ݅  to ݆ , ߶ଶሺ݃ሺ݆, ሻሻݐ ൒ ߶ଶሺ݃ሺ݅, ሻሻݐ ൅
ఈ
ఉ

߶ଵሺ1ሻܿݏ݋ሺߠሻሺ0 ൑ ߠ ൑  .ሻߨ

Before we formally prove the convergence theorem, let's first take a look at the 
degenerate case where  is zero. According to our discussion, this is the case that only 
considers the Markov model. It is possible that the target takes unusual actions, i.e., takes a 

move from cell  to cell , although statistically a୧୨ ൐ a୧୩. This implies that purely relying 

on Markov information does not guarantee that all tracking messages can reach the target. 

Proof. The proof of the theorem can be divided into two parts: Case 1, α ൌ 0, hence the 
model becomes gradient model. Since each step i to j, gሺi, tሻ ൏ ݃ሺ݆, ሻݐ , gሺi, tሻ  is a 
monotonically increasing function from the source to the target, so does Ԅଶሺgሺi, tሻሻ. By the 
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definition of gሺtሻ, ሺ0׊ ൑ t ൑ Tሻ,0 ൑ gሺtሻ ൑ 1, and only at target position gሺtሻ ൌ 1. This 
guarantees the tracking messages will only stop at the target; Case 2, α ് 0ሺ0 ൏ α ൏ 1ሻ. 

Since  move from  to , Ԅଶሺgሺj, tሻሻ ൒ Ԅଶሺgሺi, tሻሻ ൅ ஑
ஒ

Ԅଵሺ1ሻcosሺθሻ, we have:  

 ߶ଶሺ݃ሺ݆, ሻሻݐ ൒ ߶ଶሺ݃ሺ݅, ሻሻݐ ൅ ఈ
ఉ

߶ଵሺ1ሻܿݏ݋ሺߠሻሺ0 ൑ ߠ ൑  ሻ    (3)ߨ

 ֜ ߶ଶሺ݃ሺ݆, ሻሻݐ െ ߶ଶሺ݃ሺ݅, ሻሻݐ ൒ ஑
ఉ

߶ଵሺ1ሻܿݏ݋ሺߠሻ            (4)  

 ֜ ,ሺ߶ଶሺ݃ሺ݆ߙ ሻሻݐ െ ߶ଶሺ݃ሺ݅, ሻሻሻݐ ൒  ሻ         (5)ߠሺݏ݋ଵሺ1ሻܿ߶ߚ
 ֜ ,ሺ߶ଶሺ݃ሺ݆ߙ ሻሻݐ െ ߶ଶሺ݃ሺ݅,  ሻሻሻݐ
 ൒ ሺ߶ଵሺܽ௞௜ሻߚ െ ߶ଵሺܽ௜௝ሻሻܿݏ݋ሺߠሻሺ݇׊, 0 ൑ ߠ ൑  ሻ          (6)ߨ
 ֞ ߮ሺ݆ሻ ൐ ߮ሺ݅ሻ                                     (7) 

Now we see that utility function  is monotonically increasing and the cell that the 
target is located gives the highest information utility. This completes the proof of our theorem 
that PMBT is guaranteed to deliver all tracking messages to the target's location given the 
conditions. 

Note that during the tracking process a querying message does not know the real location 
of the target. We can only use the recorded/estimated target location to compute the 
projection angle θ. Obviously, the effectiveness of the tracking algorithm is affected by the 
precision of estimating θ. In the following discussion, we first prove that the estimation error 
(of θ) is bounded, and then derive the formula to calculate the confidence as the quality 
measure of the gradient. 

Theorem 2. The error (ߝ) of calculating the projection angle using the recorded 

target's position is bounded by ܽ݊݅ݏܿݎሺ௩௧
஽

ሻ, where ܦ is the distance from current position to 

the recorded target's position, ݒ is the target speed, and ݐ is the time elapse since last 

encounter. That is, the real projection ߆௥௘௔௟ satisfies: ߠ௘௦௧ െ ሺ௩௧݊݅ݏܿݎܽ
஽

ሻሻ ൑ ௥௘௔௟߆ ൑ ௘௦௧ߠ ൅

ሺ௩௧݊݅ݏܿݎܽ
஽

ሻ. 

 

Proof. As shown in Figure 4, on calculating the utility value from node i to node j, the 
estimated θ ( the angle סjit) is used. Within time , the real target must be located in the 
dashed circle with radii vt, regardless of its mobility model. Therefore, the maximum 

variation of θ is arcsinሺ୴୲
D

ሻ. Hence θୣୱ୲ െ arcsinሺ୴୲
D

ሻሻ ൑ Θ୰ୣୟ୪ ൑ θୣୱ୲ ൅ arcsinሺ୴୲
D

ሻ.  
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Figure  4: Error bound for projection angle  
   

 
Figure  5: Probability of a predefined projection error 

   
Corollary. Given an error tolerance ߝ଴ , the confidence of projection defined as 

ܲሺߠ െ ଴ߝ ൏ ߠ ൏ ߠ ൅   :଴ሻ for random waypoint mobility model, can be calculated as followsߝ

 ܲሺ0 ൏ ߝ ൑ ଴ሻߝ ൌ 2݉ݎ ൅1
4݉ݎ2 ߨ ሾ݉ݎ

2 ߨ ൅ 0ߝ݊݅ݏܦ0ሻ2arccosሺߝ݊݅ݏ2ሺܦ4
݉ݎ

ሻ 

 െ2ߝ݊݅ݏܦ଴ሺ௥೘
మ ି஽మሺ௦௜௡ఌబሻమ

௥೘
మ ሻ

೘
మ ൅ ௠ݎ

ଶarcsinሺ஽௦௜௡ఌబ
௥೘

ሻሿ 

 where ݎ௠ ൌ  .ݐݒ

In [22], the node distribution probability density function for random waypoint mobility 
model in a circle is given in equation 8:  

 fሺr, Ԅሻ ൌ fሺrሻ ൌ ିଶ
୰ౣ

ర ஠
rଶ ൅ ଶ

୰ౣ
మ ஠

    (8) 

where 0 ൑ r ൑ r୫. In our case, r୫ ൌ vt. Given an error bound ε଴, the probability of the 
projection angle within the range Pሺθ െ ε଴ ൏ θ ൏ θ ൅ ε଴) is the probability of the node 
located within the shaded area in Figure 5, which we call the confidence. To compute the 
confidence, we first compute the error probability Pୣ ୰୰ by the following equation 9:  

 Pୣ ୰୰ ൌ Pሺε ൐ ε଴ሻ ൌ ׬  ୰ౣ
Dୱ୧୬கబ

׬  
ଶୟ୰ୡୡ୭ୱ ౨

౨ౣ
଴ fሺrሻ ڄ r ڄ ԄdԄdr   (9) 
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The result of the integration is:  

 Pୣ ୰୰ ൌ ୰ౣ
మ ିଵ

ଶ୰ౣ
ర ஠

ሾr୫
ଶ π െ 4Dଶሺsinε଴ሻଶarccosሺDୱ୧୬கబ

୰ౣ
ሻ ൅ 

 2Dsinε଴ሺ୰ౣ
మ ିDమሺୱ୧୬கబሻమ

୰ౣ
మ ሻ

ౣ
మ െ r୫

ଶ arcsinሺDୱ୧୬கబ
୰ౣ

ሻሿ  (10) 

 

Accordingly, the confidence is Pሺ0 ൏ ε ൑ ε଴ሻ ൌ 1 െ Pୣ ୰୰, which is:  

 Pሺ0 ൏ ε ൑ ε଴ሻ 

 ൌ ୰ౣ
మ ାଵ

ଶ୰ౣ
ర ஠

ሾr୫
ଶ π ൅ 4Dଶሺsinε଴ሻଶarccosሺDୱ୧୬கబ

୰ౣ
ሻ െ 

 2Dsinε଴ሺ୰ౣ
మ ିDమሺୱ୧୬கబሻమ

୰ౣ
మ ሻ

ౣ
మ ൅ r୫

ଶ arcsinሺDୱ୧୬கబ
୰ౣ

ሻሿ   (11) 

 As we can see from this formula, the confidence is a function of  and r୫, which is 
directly derivable if a node can record the location and timestamp of its last encounter with 
the target. Thereby it is possible to evaluate the confidence at each step. 

Adaptive Tuning of . Tuning of the coefficients  and  helps to improve the 
tracking performance. For this purpose, we use the confidence defined in Corollary as the 
quality measure of the gradient (q୥). The quality measure infers the usability of the gradient. 
We adaptively tune  by incorporating the quality into our model1.  

We call the model capable of adaptively tuning of  and  the Adaptive-PMBT model, 
or A-PMBT model. High q୥ has positive impact on  and negative impact on . In the 
A-PMBT model,  and  are no longer constant, but dependent on q୥. Hence the utility 
function in the A-PMBT model becomes equation 12:  

 φሺiሻ ൌ αሺq୥ሻԄଵሺa୧୨ሻcosሺθ୧୨ሻ ൅ βሺq୥ሻԄଶሺgሺi, tሻሻ   (12) 

We compare the performance of the A-PMBT model with the PMBT model in the 
simulation section. 

 In the HMM model, the state is not directly achievable, but variables influenced by the 
states are achievable. Each state has a probability distribution over the possible output. 
Therefore the sequence of observations generated by an HMM gives some indications about 
the sequence of states. For simplifying the PMBT model, we assume the states are directly 
observable, hence in fact incorporating a regular Markov model. Later we will show that 
using a loose synchrony mechanism, PMBT can still achieve good performance while 
keeping the system lightweight. In summary, PMBT is a progressive framework that provides 
incremental accuracy at each step. That is, each cell forwards the query message to the next 
cell with the maximized information gain to potentially increase the accuracy.  

                                                        
,are constrained weights for ݆ܽ݅ and ݃ሺ݅ ߚ and ߙ ݏܣ 1  .alone is sufficient for our model ߚ ሻ, tuning ofݐ
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3  Distributed Implementation  

Implementation of PMBT needs to consider 1) how data is coordinated in cell layer, and 
2) how to forward tracking messages efficiently. Moreover, as we show in the following 
discussion, our design of soft-state loose synchrony for each cell and polite gossip message 
forwarding further reduces message overhead to keep the system lightweight. 

Note that each cell only holds the information locally, without knowing the neighboring 
cell's information. To select next move, the cell may ask neighboring cells for their utility 
information before making a decision. However, this operation not only requires cell 
synchronization over the data within each cell but also introduces large overhead. To keep the 
model lightweight, we provide an alternative distributed implementation of message 
forwarding-Polite Gossip and soft state strategy in the following discussion.  

 
3.1  Loose Synchrony 

To maintain the data consistency in a cell, previous mobile tracking frameworks such as 
VINESTALK [6], GLS [8], and HGRID[19], used strict synchronization: nodes constantly 
exchange information with neighboring nodes to keep synchronization. This causes extra 
overhead and consumes unnecessary network bandwidth when all nodes are mobile. We 
observe that such strict synchronization for cells may not be necessary. Considering the 
constant changing of topology in our model, the loose synchrony approach is most 
appropriate because it avoids extra traffic in high mobility circumstances  In PMBT, we 
loosely synchronize the state of nodes in each cell through snooping the target event by 
utilizing the nature of wireless broadcast communication.  In our implementation, nodes in a 
cell hold different gradients and utility information that are not exchanged. Markovian 
transition information used in constructing utilities are cell-based and shared among nodes in 
a cell. More specifically, the operations of PMBT are: 1) when a new node enters a cell, it 
picks up the Markov information in this cell by sending a DATA REQUEST message. 2) 
when a node leaves a cell, the old information associated are simply dropped. 3) when a 
query comes, the node with maximum utility in the cell decides the next move and forwards 
the message with ``Polite Gossip mechanism'', which is described in the following 
subsection. 

Of course, such lightweight implementation trade-offs the possibility of failures. 
Transient data loss will occur when all the nodes holding the shared information move out of 
a cell, while those newly joined nodes have no clue. In this case, the nodes simply forward 
the message to a randomly selected neighboring cell. The reasons of a message failure could 
be: a message is forwarded to an empty cell or a message is lost due to collisions. 

 
3.2  Polite Gossip Forwarding 

 Our implementation of PMBT does not need to select a leader node in a cell to response 
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a query. We make all nodes in a cell behave uniformly as a single node by employing the 
following polite gossip mechanism. In polite gossip, a node suppresses sending a message on 
hearing the same message sent by other nodes within the same cell: if during the backoff 
period, a node hears any other node sending the same message, it drops the message from the 
sending queue. 

To realize polite gossip forwarding effectively, we use two types of backoff timer: a 
default CSMA backoff timer and an application layer backoff timer. These two timers 
perform different functions in our model: the default CSMA backoff timer is used for 
reducing collisions between cells, and the application layer backoff timer is used for 
suppressing the sending of duplicated messages in a cell. We set the application layer backoff 
timer of each node inside a cell to be proportional to the node's utility function. Therefore, 
nodes with high utility functions are more likely to trigger the response messages. The 
implementation of this scheme nicely integrates PMBT and message forwarding, and is 
lightweight and scalable. 

The application layer backoff timer should be carefully designed to reduce message 
duplications and conflicts in forwarding. Let Tapp denote the application layer maximum 
backoff time and T୫ୱ୥ be the time to send a message. If there are  nodes within the same 
cell, the joint probability of backoff timer for n nodes in the cell pሺtଵ, tଶ, . . . , t୬ሻ can be 
written in conditional probability in equation 13: 

 pሺtଵ, tଶ, . . . , t୬ሻ ൌ pሺtଵ/tଶ, tଷ, . . . t୬ሻ כ pሺtଶ, tଷ, . . . , t୬ሻ      (13) 

The probability that the rest n െ 1 nodes can hear the first node's transmission and 
disable their own transmission attempts is:  

 P ൌ ׬  T౗౦౦ିTౣ౩ౝ
଴ ׬  T౗౦౦

୲భାTౣ౩ౝ
. . . ׬  T౗౦౦

୲భାTౣ౩ౝ
pሺtଵ, tଶ, . . . , t୬ሻ. . . , dtଶ, dtଵ (14) 

The result of this integration is:  

 P ൌ ሺ1 െ Tౣ౩ౝ

T౗౦౦
ሻ୬   (15) 

Using this formula, we can set Tୟ୮୮ appropriately according to system requirements. 

For example, assuming there are two nodes in a cell on average and requiring that the 
duplication of sending is less than 20%, the application layer backoff is:  

 Tୟ୮୮ ൎ 10 כ T୫ୱ୥   (16) 

In our implementation of polite-gossip forwarding, we use implicit acknowledgment. 
When a node that transmits a message to the next cell does not hear this message forwarding 
further by that cell, it will resend its message. This is a best effort mechanism and it fails if 
the transmitter node leaves its cell before it had a chance to resend the message. 
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4  Simulations 
  

In this section, we simulate the above protocols in a 2D discrete WSN grid and describe 
its effectiveness and robustness properties. In the simulations we consider a map of 10 ൈ 10 
discrete cells, with size 100m ൈ 100m. Each node is aware of the location (x,y), and is 
assigned to some cell initially. Before evaluating and comparing the effectiveness and 
efficiency of the proposed tracking algorithms, let us first verify the underlying cell 
abstraction framework itself. Simulations are prototyped/witten in Java program. 

We consider the random waypoint mobility model: a node selects a random point which 
is uniformly distributed in the field and moves toward the destination at a certain speed. 
When the node reaches the destination, it rests for a a certain period of time and selects the 
next point. The performance of the framework is closely related to the mobility process as a 
cell's behaviors are simulated by the physical nodes in the cell that are loosely synchronized. 

 In other words, if all the nodes move out of a cell (i.e., the cell becomes empty), the cell 
may simply lose the information, leading to a potential failure. The analysis of cell failure can 
be used to quantify the usability and scalability of the framework, depending on the design 
requirements of the system. 

We plot the cell failure probability in 2D as shown in figure 6. The failure probabilities 
decrease with the increase of node density, which is an obvious observation due to the 
soft-state implementation. For random waypoint mobility model, cells closer to borders are 
more likely to become empty. With 400 mobile nodes in the field (4 nodes/cell in average), 
the average failure probability is below 4%; if we increase the node sensity to 6 nodes/cell, 
the average failure probability is below 1%. This implies that given a reasonable dense 
mobile network, the probability of a cell without any node can be negligible.  

  

 

Figure  6: Cell empty probability distribution, random waypoint model 

    

In the following discussion, we present results showing the performance of the discussed 
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algorithms. The target models we have simulated include a ROAD model where the target's 
movement is constraint to roads, and a FIELD model where the target is free to move toward 
any direction. In both experiments, we assume the detecting nodes are free to be mobile, and 
nodes have already been trained with some initial data. The simulations both in the ROAD 
model and the FIELD model use a decay function gሺtሻ ൌ eି୲ with weight factor α ൌ 0.5 
and β ൌ 0.5. In both experiments, we use unicast principle: a querying message is sent to the 
cell with maximum information utility. 

To compare their performance, we implement all three models and study the following 
metrics under different settings. The tracking success rate measures the percentage of 
tracking messages that are delivered from the initiator to the target. The average path length 
measures the number of hops a querying message passes before reaching the target. Since the 
average path length cannot tell the efficiency of different models, we introduce a new metric 
named average stretch factor to measure distance െ sensitivity. Distance-sensitivity for a 
tracking implies that the cost of a tracking message should be at most a constant factor  of 
the distance  to the event of interest in the network [21]. Here the constant factor  is what 
we call stretch factor, and its value can be achieved by calculating the ratio of the path 
length(in hops) to the distance(in hops) between the tracking node and the target. 

 
4.1  ROAD Model 

 

In this model, we presume the target moves along the road at a constant speed 10 m/s and 
the stationary track node is located in up-left coner as shown in Figure 7. 300 nodes are 
randomly located in the field initially and move in random waypoint model. Although the 
PMBT model is able to predict the trajectory of the target along the road, nonsuccessive 
detections or temporary node failures will lead to performance degenerations, i.e., the 
tracking path may become much longer.  

 

Figure  7: ROAD model scenario. 

Figure 8 shows tracking paths from the tracking node to the target for a particular 
snapshot using different models. As we can see from the figure, the path is usually longer 
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using the HMM model than using the other two. That is because the cells faraway from the 
road are absent of any prior knowledge after the training process, making the first few steps 
relatively blind. However, after reaching the road, it is able to catch the real target movement 
trace. On the other hand, the Gradient model usually can pick a short path, but it is not 
sensitive to the movement trail of a target. At any moment, the gradients are determined by 
the mobile nodes that might not be perfectly inverse to the distance to the target (as we can 
see from Figure 2, the contour are not perfect circles). That is why we see that tracking paths 
cross the road instead of simply following the road. The PMBT model (Trust model in the 
figure) integrates these two models: at the beginning, the path is comparable to the Gradient 
model; and later it is comparable to the HMM model. As we have stated, PMBT model reaps 
the advantages of both models, but alleviates their limitations. 

 

 
Figure  8: A snapshot of tracking paths for three models. 

Table 1 lists the average path length (in hops) and average stretch factor for all models. 
The tracking node is located at the left corner of the road. We set the buffer size to be 100 
(messages), and observe that the tracking success rate is more than 95% for both the HMM 
model and the PMBT models (both PMBT and A-PMBT). Cell emptiness, forwarding loop, 
or queue overloading are the main factors to cause failures. PMBT, A-PMBT, and the HMM 
model have shorter average path lengths and average stretch factors than the Gradient model. 
This is mainly because the transition probability dominates the message forwarding, making 
the HMM model and the PMBT model more effective. A-PMBT slightly out performs PMBT 
owing to the adaptive tuning of parameters. In the simulation we let the tracking node locate 
on the road that is the best case for HMM; whereas if the tracking node is far away from the 
road, HMM becomes less efficient to catch the target due to the lack of information around 
the tracking node. 

  
Table  1: Simulation results for ROAD Model 
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   HMM   Gradient   PMBT   A-PMBT  
 Average Path 
Length(hops) 

 8.1   14.9   7.8   7.7  

 Average 
Stretch Factor 

 2.2   3.8   2.1   2.1  

 Success Rate   95%   90%   96%   97% 
   

   
4.2  FIELD Model 

 In this model, we assume the target moves freely in the field; nodes in the 
communication range can detect the target and update their records correspondingly. Again, 
all nodes move according to the random waypoint model. Table 2 shows the simulation 
results in the FIELD model. A-PMBT, PMBT, and the Gradient model perform similarly in 
terms of the path length and success rate. Both the PMBT models and the Gradient model 
show better performance than the HMM model due to their partial capability to capture the 
target's trails. As the target moves in a random model, HMM fails to capture the target 
efficiently. Tuning of parameters improves the usability of gradients, thereby provides small 
improvements for the A-PMBT model. Overall, both PMBT and A-PMBT illustrate better 
performance and resiliency in tracking, and A-PMBT shows best performance among these 
models.  

  
Table  2: Simulation results for FIELD Model 

  
   HMM   Gradient   PMBT   A-PMBT  

 Average Path 
Length(hops) 

 15.3   10   9.4   9.2  

 Average 
Stretch Factor 

 4.7  3.1   3.0   2.9  

 Success Rate  80%   91%   96%   97%  
   

We find that for GLS [8] (which hashes location information to the network at different 
levels), the success rate is above 99% with the same network settings. However, GLS has 
much higher maintenance overhead as shown in Figure 9. GLS generates three types of 
protocol packets: HELLO packets to advertise the existence of the node to neighboring nodes, 
periodic location update packets, and location query and reply packets. PMBT protocol 
includes two types of messages: location querying/replying packets, and information request 
packets when a mobile node entering a new cell. As a consequence, PMBT is more 
lightweight with slightly less accuracy.  
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Figure  9: GLS has higher message overhead and is not linearly scalable to the number of nodes; PMBT is 
more lightweight and linearly scalable to the number of nodes.   

 

,ࢻ  4.3  tuning ࢼ

For PMBT model without adaptive tuning, the initial setting of weights  and  
impacts the performance. Changing of the initial weight factor may cause the success rate to 
increase or decrease. The success rate PMBT model with different weights are shown in 
Figure 10 for Road environment and Figure 11 for Field environment. In neither mode the 
line is monotonic, it is low in both ends and high in between. The left end represents Gradient 
model (α ൌ 0), and the right side (α ൌ 1) represents an improved Markov model. According 
to the definition of utility, when β ൌ 0 it only considers Markov model, whereas PMBT still 
shows better performance than the Markov model. This is owing to the contribution of 
projection coefficient, which makes some correction for the transition probability. When 
β ൌ 1, this becomes exactly the Gradient model, so the performance of PMBT is close to the 
Gradient model. 

An exact optimal setting is often hard to find due to the dynamics of a system, 
nevertheless, a range close to optimal setting is more practically achievable. In our case, 
when α ؿ ሾ0.2,0.8ሿ in ROAD model or α ؿ ሾ0.1,0.9ሿ in FIELD model, the success rate is 
close to optimal and does not change much. The size of window is relevant to the selection of 
decay function and network settings, such as mobility models and node density.  
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Figure  10: Success rate for ROAD model with different weight coefficients 

 

Figure  11: Success rate for FIELD model with different weight coefficients 
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5  Related Work 

  Graphical techniques such as HMMs [17, 18] have been investigated and widely 
applied in target tracking domain. In these approaches, targets move in a rectangular area at 
each discrete time interval. Cells, associated with states, form an adjacent graphical model. 
State transitions are only allowed between neighboring cells. HMMs are used to calculate 
most probable object paths given historical observations. As we mentioned before, HMM 
models haves limitations in nature when applied in WSNs: HMM predicts next move only 
based on the last location, hence leads to large errors against real trails; Moreover, HMM is 
more appropriate for offline processing than online tracking. 

Dynamic hierarchical/cluster based structures are another category of approaches for 
mobile target tracking applications [8, 9, 10, 20]). GLS is a scalable and distributed location 
service structure which divides the global map into hierarchical grids with increased size at 
high levels. It selects location servers at each level based on least greater ID rules. Queries 
are forwarded in the same rule by checking location tables. DCTC (Dynamic Convoy 
Tree-based Collaboration) [10] uses a tree structure called 'Convoy Tree', which is rooted at 
the target's location and is dynamically adjusted as the target moves. MDQT [9] overlays a 
virtually static distributed Quad-Tree structure in the field. As a node detects the target, it 
pushes the event into the tree until the event reaches the root. Hence a frequent update 
scheme is needed to keep the information up-to-date. In [20], a dynamic clustering 
framework is proposed for acoustic target tracking in wireless sensor networks. Clusters are 
dynamically formed and the clusterhead in each cluster is in charge of data collecting, 
message forwarding and target estimation. All these structure based approaches involve 
structure reconfiguration via explicit message exchanges at each move for every mobile 
nodes, hence cost considerable amount of energy. Information driven PMBT model is 
different from all aboves in that it does not have a 'tree structure' at all, and thus such 
coordination cost is reduced. 

Gradient based structure-free approaches are also commonly used in routing and tracking 
applications. GRAB [12] builds and maintains a cost field, providing each node the direction 
to forward messages. FRESH [14] constructs age gradients for all nodes encountered. 
Messages are forwarded anchor by anchor that is discovered by broadcast-based searching at 
each step. Both FRESH and GRAB protocols aim to limit the radius of broadcast to save 
energy, whereas broadcast is still costly compared with PMBT. GraDrive [13] is also a 
gradient driven model for dynamic target tracking applications. GraDrive integrates per-node 
prediction with global collaborative prediction to estimate the location of a target. Although 
GraDrive provides a shortest path to the target, it requires a global view of the entire dataset, 
which is often impossible for a fully distributed network. Furthermore, it is also not energy 
efficient due to the communication overhead for collecting data to the base station.   

 
6  Conclusion 

  In this paper, we proposed the PMBT model, a generic tracking framework for online 
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tracking applications, by integrating a Gradient model of the target's proximity and an online 
statistic Markov model of the target's likely direction. PMBT is a probabilistic online tracking 
algorithm that computes information utilities at each step, and then chooses the next step 
toward the target based on the maximum expected utility. PMBT achieves Oሺ1ሻ updating 
cost with comparable performance as deterministic protocols such as GLS. The A-PMBT 
model, a PMBT model capable of tuning the weights adaptively based on the evaluation of 
the gradient quality, provides a slight performance improvement. Both analysis and 
evaluation on simulations demonstrated that PMBT can significantly improve the 
performance and reduce the overall transmission cost compared to using the Markov model 
or Gradient model alone. 
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