HTHP HomeIssue ContentsForthcoming Papers

Energy bandgap variation in semiconductor compound nanomaterials
Pooja Chaturvedi and Monika Goyal

In the present work, we have used phenomological models for analyzing the impact of shape and size on energy band gap in semiconducting nanomaterial compounds. The models used presently are Qi model, Bond energy model and Guisbiers model. The extension of melting temperature expression for nanomaterials of the models considered is done and shape and size dependent expression of energy band gap is obtained. In this paper, we have taken group III-V semiconductor compound nanomaterials i.e., AlN, GaN, InN, GaAs and InAs. It is clear from the results obtained that decrease in the size of the semiconductor compound nanomaterials led to band gap expansion and this increase is significant for particle size below 5 nm. Comparison of the results predicted using different models with the available experimental and simulated results is done. Guisbiers model is found best out of the models considered to study the band gap expansion in semiconducting nanomaterial compounds. The energy band gap shift in valence and conduction band with size is determined in nanosemiconductors.

Keywords: shape factor; cohesive energy; energy bandgap; size

Full Text (IP)
DOI: 10.32908/hthp.v50.861